3D integrated superconducting qubits
Journal article, 2017

As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2, echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

Author

D. Rosenberg

MIT Lincoln Laboratory

D. Kim

MIT Lincoln Laboratory

R. Das

MIT Lincoln Laboratory

D. Yost

MIT Lincoln Laboratory

S. Gustavsson

Massachusetts Institute of Technology (MIT)

D. Hover

MIT Lincoln Laboratory

Philip Krantz

Massachusetts Institute of Technology (MIT)

A. Melville

MIT Lincoln Laboratory

L. Racz

MIT Lincoln Laboratory

G. O. Samach

MIT Lincoln Laboratory

S.J. Weber

MIT Lincoln Laboratory

F. Yan

Massachusetts Institute of Technology (MIT)

J.L. Yoder

MIT Lincoln Laboratory

A.J. Kerman

MIT Lincoln Laboratory

W. D. Oliver

Massachusetts Institute of Technology (MIT)

npj Quantum Information

2056-6387 (eISSN)

Vol. 3 42

Areas of Advance

Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)

Subject Categories (SSIF 2011)

Other Physics Topics

Nano Technology

DOI

10.1038/s41534-017-0044-0

More information

Latest update

12/13/2019