Characterizations of Mutual Coupling Effects on Switch-Based Phased Array Antennas for 5G Millimeter-Wave Mobile Communications
Journal article, 2019

The fifth generation (5G) millimeter-wave (mmWave) handset demands a cost-effective mmWave array antenna with beam steering capability to overcome the high-pass loss and to ensure seamless connectivity. Unlike sub-6-GHz handsets, emerging mmWave handsets usually employ phased array antennas with a reasonably large number of elements. Unfortunately, due to the legacy of a few antennas in sub-6-GHz handsets, the mutual coupling effect on the mmWave handset has not been thoroughly investigated. In this paper, we study the mutual coupling effect on the mmWave handset performance by comparing array antennas with different inter-element spacing and different configurations. It is found that mutual coupling tends to increase the active reflection (especially at large scanning angles), which in turn reduces the realized gain and maximum scanning angle of the phased array antenna. For a sub-6-GHz multiple-input multiple-output handset with two or four antenna ports and fully digital precoding/decoding, 10-dB isolation is usually regarded as good enough. It is shown in this paper, however, that the outage capacity of the mmWave handset can be clearly improved by reducing the mutual coupling.

millimeter-wave (mmWave)

Active reflection

Mutual coupling


mutual coupling

Telephone sets

multiple-input multiple-output (MIMO)

5G mobile communication

handset array

Array signal processing

Phased arrays


Chen Xiaoming

Xi'an Jiaotong University

Muhammad Abdullah

Xi'an Jiaotong University

Qinlong Li

Xi'an Jiaotong University

Jianxing Li

Xi'an Jiaotong University

Anxue Zhang

Xi'an Jiaotong University

Tommy Svensson

Chalmers, Electrical Engineering, Communication and Antenna Systems, Communication Systems

IEEE Access

2169-3536 (ISSN)

Vol. 7 31376-31384

Subject Categories


Signal Processing

Other Electrical Engineering, Electronic Engineering, Information Engineering



More information

Latest update