Sunlight-thin nanophotonic monocrystalline silicon solar cells
Other text in scientific journal, 2017

Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro-to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

Colloidal lithography

Nanophotonics

Crystalline-silicon film

Light trapping

Photovoltaics

Author

V. Depauw

Interuniversity Micro-Electronics Center at Leuven

C. Trompoukis

KU Leuven

Interuniversity Micro-Electronics Center at Leuven

Ghent university

Ines Massiot

Chalmers, Physics, Bionanophotonics

W. H. Chen

University Paris-Saclay

Alexander Dmitriev

Stanford University

University of Gothenburg

P. R. I. Cabarrocas

University Paris-Saclay

I. Gordon

Interuniversity Micro-Electronics Center at Leuven

J. Poortmans

Heart Center Hasselt

KU Leuven

Interuniversity Micro-Electronics Center at Leuven

Nano Futures

23991984 (eISSN)

Vol. 1 2 021001

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS)

European Commission (EC) (EC/FP7/309127), 2012-11-01 -- 2015-10-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Other Physics Topics

Bioengineering Equipment

DOI

10.1088/2399-1984/aa7d7c

More information

Latest update

11/25/2019