Measuring Traffic in Cities Through a Large-Scale Online Platform
Journal article, 2019

Online real-time traffic data services could effectively deliver traffic information to people all over the world and provide large benefits to the society and research about cities. Yet, city-wide road network traffic data are often hard to come by on a large scale over a longer period of time. We collect, describe, and analyze traffic data for 45 cities from HERE, a major online real-time traffic information provider. We sampled the online platform for city traffic data every 5 min during 1 year, in total more than 5 million samples covering more than 300 thousand road segments. Our aim is to describe some of the practical issues surrounding the data that we experienced in working with this type of data source, as well as to explore the data patterns and see how this data source provides information to study traffic in cities. We focus on data availability to characterize how traffic information is available for different cities; it measures the share of road segments with real-time traffic information at a given time for a given city. We describe the patterns of real-time data availability, and evaluate methods to handle filling in missing speed data for road segments when real-time information was not available. We conduct a validation case study based on Swedish traffic sensor data and point out challenges for future validation. Our findings include (i) a case study of validating the HERE data against ground truth available for roads and lanes in a Swedish city, showing that real-time traffic data tends to follow dips in travel speed but miss instantaneous higher speed measured in some sensors, typically at times when there are fewer vehicles on the road; (ii) using time series clustering, we identify four clusters of cities with different types of measurement patterns; and (iii) a k-nearest neighbor-based method consistently outperforms other methods to fill in missing real-time traffic speeds. We illustrate how to work with this kind of traffic data source that is increasingly available to researchers, travellers, and city planners. Future work is needed to broaden the scope of validation, and to apply these methods to use online data for improving our knowledge of traffic in cities.

travel delays

urban traffic

big data,

time series clustering

data availability

Author

Vilhelm Verendel

Chalmers, Computer Science and Engineering (Chalmers), CSE Verksamhetsstöd

Sonia Yeh

Chalmers, Space, Earth and Environment, Physical Resource Theory

Journal of Big Data Analytics in Transportation

2523-3556 (ISSN) 2523-3564 (eISSN)

Vol. 1 2-3 161-173

MAKING CITIES MORE SUSTAINABLE: USING BIG AND CONTINUOUS DATA TO UNDERSTAND URBAN MOBILITY AND CONGESTIONS

Formas (2016-01326), 2017-01-01 -- 2019-12-31.

Subject Categories (SSIF 2011)

Other Computer and Information Science

Transport Systems and Logistics

Infrastructure Engineering

Areas of Advance

Information and Communication Technology

Transport

Energy

Driving Forces

Sustainable development

DOI

10.1007/s42421-019-00007-7

More information

Latest update

4/15/2020