Transport in mesoscopic superconducting devices
Licentiate thesis, 2019
The focus of this work is on mesoscopic hybrid structures consisting of superconducting, normal-metal, and magnetic regions. The combination of these different types of materials and the competition between interactions such as magnetism and superconductivity can then be used to design structures with novel effects. This is not only interesting from a fundamental point of view but equally relevant for technological applications. The magnet-superconductor hybrid structures examined in this work, for example, give rise spin-polarized Andreev bound states, a promising ingredient to superconducting spintronics.
We study transport in such hybrid systems under current bias to investigate the effects of such Andreev bound states on nonequilibrium properties. As part of this work, we develop a general calculation scheme for current-bias nonequilibrium within the quasiclassical theory of superconductivity. We use this scheme to study charge and spin imbalance in a normal-metal/superconductor structure with a spin-active interface. Our results show that transport in systems with spatially extended tunnel barriers is more accurately described by this current-bias picture compared to a voltage-bias description traditionally used in the theoretical literature for narrow constrictions. We find that the presence of Andreev bound states at a spin-active interface between normal-metal and superconducting regions strongly influence the charge as well as spin transport in such structures.
superconductivity
quasiclassical theory
mesoscopic physics
nonequilibrium superconductivity
Andreev bound states
superconducting spintronics
Author
Kevin Marc Seja
Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics
Areas of Advance
Nanoscience and Nanotechnology (SO 2010-2017, EI 2018-)
Roots
Basic sciences
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Subject Categories (SSIF 2011)
Condensed Matter Physics
Technical report MC2 - Department of Microtechnology and Nanoscience, Chalmers University of Technology: 428
Publisher
Chalmers
MC2 Seminarierum Hbar (C511)
Opponent: Thilo Bauch