Lipid accumulation in wild Saccharomyces cerevisiae strains and their application for biodiesel
Conference poster, 2018
Oils produced by microorganisms are currently the most promising feedstock for sustainable biodiesel production. Yeast is attracting considerable attention, but the low productivity of these microorganisms on low or negative value substrates, such as lignocellulose-enriched residues, still hinders the industrial application of microbial oils. The development of robust yeast strains with increased oil yield and resistance to the different inhibitors present in the substrates is therefore one of the most important steps to improve the feasibility of microbial biodiesel [1].
Bioprospecting of wild environments frequently yields microorganisms with high resistance to a wide range of environmental stresses. Spontaneous fermentations of spirits are often associated with yeast strains adapted to high temperatures and capable of using multiple substrates [2]. In a previous study, yeast strains isolated from spontaneous cachaça fermentation vessels in Brazil exhibited lipid accumulation in the presence of biodiesel-derived glycerol (unpublished results). In this project, wild Saccharomyces cerevisiae strains isolated from the same environment were screened for their potential to produce biodiesel from lignocellulosic residues. The strains that displayed high resistance to common lignocellulosic inhibitors (viz. acetic acid, furfural and 5-hydromethoxyfurfural), were further assessed for lipid production. The strains’ lipid accumulation profiles were evaluated by adding the lipid droplet-specific fluorescent dye BODIPY493/503 to the growth media and measuring growth and fluorescence emission over time using the Biolector. The effects of carbon-to-nitrogen ratio (C/N) and temperature on biomass production and lipid accumulation were also assessed, in order to define the optimal lipid accumulation-inducing conditions for each strain. The best performing strains were further characterized using GC-MS and GC-FID, to identify and quantify the main fatty acids present in the lipids. The best performing S. cerevisiae strains show high potential for application in biodiesel production, presenting high lipid accumulation over a wide range of C/N and temperatures.
lignocellulosic hydrolysate
biofuels
biodiesel
yeast
Author
Fábio Luis Da Silva Faria Oliveira
Chalmers, Biology and Biological Engineering, Industrial Biotechnology
Lisbeth Olsson
Chalmers, Biology and Biological Engineering, Industrial Biotechnology
Rzeszów, Poland,
Microwave-assisted transesterfication of lignocellulose-derived yeast oils for biofuel application
VINNOVA (2017-03486), 2018-01-01 -- 2019-12-31.
Energy, 2018-01-01 -- 2019-12-31.
Areas of Advance
Energy
Subject Categories
Chemical Process Engineering
Other Environmental Engineering
Bioenergy