The effect of numerical dissipation on the predictive accuracy of wall-modelled large-eddy simulation
Paper in proceeding, 2019

The effect of numerical dissipation on the predictive accuracy of wall-modelled large-eddy simulation is investigated via systematic simulations of fully-developed turbulent channel flow. A total of 16 simulations are conducted using the open-source computational fluid dynamics software OpenFOAMĀ®. Four densities of the computational mesh are considered, with four simulations performed on each, in turn varying in the amount of numerical dissipation introduced by the numerical scheme used for interpolating the convective fluxes. The results are compared to publicly-available data from direct numerical simulation of the same flow. Computed error profiles of all the considered flow quantities are shown to vary monotonically with the amount of dissipation introduced by the numerical schemes. As expected, increased dissipation leads to damping of high-frequency motions, which is clearly observed in the computed energy spectra. But it also results in increased energy of the large-scale motions, and a significant over-prediction of the turbulent kinetic energy in the inner region of the boundary layer. On the other hand, dissipation benefits the accuracy of the mean velocity profile, which in turn improves the prediction of the wall shear stress given by the wall model. Thus, in the current framework, the optimal choice for the dissipation of the numerical schemes may depend on the primary quantity of interest for the conducted simulation. With respect to the resolution of the grid, the change in the accuracy is much less predictable, and the optimal resolution depends on the considered quantity and the amount of dissipation introduced by the numerical schemes.

large-eddy simulation

channel flow.

wall modelling

numerical dissipation

turbulence

Author

Timofey Mukha

Chalmers, Mechanics and Maritime Sciences (M2), Marine Technology

Proceedings of the Institute for System Programming of the RAS

2079-8156 (ISSN) 2220-6426 (eISSN)

Vol. 31 6 187-194

Ivannikov ISP RAS Open Conference
Moscow, Russia,

Subject Categories (SSIF 2011)

Applied Mechanics

Computational Mathematics

Fluid Mechanics and Acoustics

Roots

Basic sciences

Infrastructure

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.15514/ISPRAS-2019-31(6)-11

More information

Latest update

7/12/2021