An Average Female Head-Neck Finite Element Model with Reflexive Neck Muscles
Licentiate thesis, 2020
The active muscles were implemented in the existing ViVA OpenHBM, and the work was divided into three studies. The first study concluded that both neck link angular position feedback (APF) and muscle length feedback (MLF) control strategies improved the head kinematics agreement compared to the passive model, but overall, the APF controller performed better. The second study showed that the optimum controller gains and parameters could be identified using optimizations. The final study evaluated different ways to combine APF and MLF controllers. Further study and optimizations are needed to understand the best way to implement and combine MLF controllers with APF controllers.
The combined work increased the understanding of how to model active neck muscle controllers representing human reflexes during whiplash induced rear-impact. The optimization strategy used in the present thesis could be repeated in other head-neck models and in other regions of the human body in future work. In summary, an open-source head-neck FE model that represents a 50th percentile female in stature and mass with active reflexive neck muscle is now available and with future development will be used to study head-neck kinematics and its relation to whiplash injuries.
Finite Element
Human Body Model
Whiplash Injury
Active Neck Muscle
Author
I Putu Alit Putra
Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Safety
Comparison of control strategies for the cervical muscles of an average female head-neck finite element model
Traffic Injury Prevention,;Vol. 20(2019)p. S116-S122
Journal article
I Putu A. Putra, J. Iraeus, F. Sato, M.Y. Svensson, A. Linder and R. Thomson. Optimization of Female Head-Neck Model with Active Reflexive Cervical Muscles in Low Severity Rear Impact Collisions
I Putu A. Putra, J. Fice, J. Iraeus, M.Y. Svensson and R. Thomson. Simplified Approach to Combine the Control Strategies of Active Reflexive Neck Muscles for an Active Female Human Body Model
Open Access Virtual Testing Protocols for Enhanced Road User Safety (VIRTUAL)
European Commission (EC) (EC/H2020/768960), 2018-06-01 -- 2022-05-31.
Virtual Vehicle Safety Assessment Step 2: Open Source Human Body Models and Crash Testing (Viva II)
VINNOVA (2016-03353), 2017-01-01 -- 2019-06-30.
Areas of Advance
Transport
Subject Categories
Other Medical Engineering
Physiology
Vehicle Engineering
Infrastructure
C3SE (Chalmers Centre for Computational Science and Engineering)
Publisher
Chalmers
Online - via Zoom
Opponent: Asst. Prof. Dipl.-Ing. Dr.techn. Corina Klug - Graz University of Technology (TU Graz) Austria