Geometric finite difference schemes for the generalized hyperelastic-rod wave equation
Journal article, 2011

Geometric integrators are presented for a class of nonlinear dispersive equations which includes the CamassaHolm equation, the BBM equation and the hyperelastic-rod wave equation. One group of schemes is designed to preserve a global property of the equations: the conservation of energy; while the other one preserves a more local feature of the equations: the multi-symplecticity.

Multi-symplecticity

CamassaHolm equation

BBM equation

Conservative schemes

Hyperelastic-rod wave

Discrete gradients

Author

David Cohen

University of Basel

Xavier Raynaud

University of Oslo

Journal of Computational and Applied Mathematics

0377-0427 (ISSN)

Vol. 235 8 1925-1940

Subject Categories (SSIF 2011)

Mathematics

DOI

10.1016/j.cam.2010.09.015

More information

Latest update

2/24/2022