Geometric finite difference schemes for the generalized hyperelastic-rod wave equation
Artikel i vetenskaplig tidskrift, 2011

Geometric integrators are presented for a class of nonlinear dispersive equations which includes the CamassaHolm equation, the BBM equation and the hyperelastic-rod wave equation. One group of schemes is designed to preserve a global property of the equations: the conservation of energy; while the other one preserves a more local feature of the equations: the multi-symplecticity.

Multi-symplecticity

CamassaHolm equation

BBM equation

Conservative schemes

Hyperelastic-rod wave

Discrete gradients

Författare

David Cohen

Universität Basel

Xavier Raynaud

Universitetet i Oslo

Journal of Computational and Applied Mathematics

0377-0427 (ISSN)

Vol. 235 8 1925-1940

Ämneskategorier (SSIF 2011)

Matematik

DOI

10.1016/j.cam.2010.09.015

Mer information

Senast uppdaterat

2022-02-24