Complete methane oxidation over alumina and zeolite supported palladium for emission control
Doctoral thesis, 2020
The results show that zeolite supported Pd is a promising candidate for the future CH4 oxidation catalyst. The use of zeolites with high silicon content significantly improved the CH4 oxidation activity in the presence of water vapor, which is ascribed to limited hydroxyl formation on the hydrophobic zeolite surface. In addition, the formation of ion-exchanged Pd2+ species is minimized in zeolites with low aluminum content. The formation of ion-exchanged Pd2+ species and Pd sintering appear to be important deactivation routes of Pd/zeolites, especially upon treatment at high temperatures and in the presence of water vapor. Zeolite supported Pd is also generally sensitive to SO2, however, the regeneration after SO2 poisoning is easier compared to for Pd/Al2O3. Hence, two major challenges for Pd/zeolite materials are stabilization of dispersed Pd particles and sulfur poisoning.
The catalytic properties can be altered by the addition of promoters, which was tested by adding Ba to Pd/Al2O3. It was found that a content of up to 2 wt.% Ba in Pd/Al2O3 does not provide electronic promotion of the Pd, however, the Ba addition improves the catalytic activity in the presence of water vapor and facilitates regeneration after water deactivation.
Whilst methane oxidation typically is tested under lean conditions, it was here also evaluated under stoichiometric and rich conditions for Pd/Al2O3. The presence of water vapor and SO2 caused substantial deactivation under stoichiometric conditions. Treatment of Pd/Al2O3 under rich conditions resulted in severe deactivation, due to reduction of active PdO into less active metallic Pd. Regeneration under stoichiometric conditions was difficult due to poor Pd re-oxidation.
Pd/zeolite
Pd/Al2O3
sulfur poisoning
stoichiometric
hydrothermal aging
water deactivation
regeneration
methane oxidation
Ba
Author
Ida Friberg
Chalmers, Chemistry and Chemical Engineering, Chemical Technology
Structure and performance of zeolite supported Pd for complete methane oxidation
Catalysis Today,;Vol. 382(2021)p. 3-12
Journal article
Deactivation of Pd based catalysts for methane oxidation under rich, stoichiometric and lean conditions
Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation
Catalysts,;Vol. 10(2020)
Journal article
The effect of Si/Al ratio of zeolite supported Pd for complete CH4 oxidation in the presence of water vapor and SO2
Applied Catalysis B: Environmental,;Vol. 250(2019)p. 117-131
Journal article
Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapor
Applied Catalysis B: Environmental,;Vol. 231(2018)p. 242-250
Journal article
Metanoxidationskatalysatorer utgörs vanligtvis av små palladiumpartiklar utspridda på ett bärarmaterial, till exempel aluminiumoxid (Al2O3). Utmaningen med dessa katalysatorer är att de deaktiveras kraftigt av vattenånga och svavelämnen, både under magra förhållanden (syreöverskott) och vid lägre syrekoncentrationer (stökiometriskt, 1CH4:2O2). Ytterligare en viktig deaktiveringsmekanism under feta förhållanden (syreunderskott) är reducering av palladiumoxid till palladiummetall som är mindre aktivt för CH4-oxidering.
I denna avhandlingen visas det att det är möjligt att minska vattendeaktiveringen genom att använda zeoliter med högt kiselinnehåll eller genom att använda Al2O3 med tillsatt barium som bärarmaterial. Användning av kiselzeoliter gör dock katalysatorn känslig för svavel, men det förenklar också regenereringen av katalysatorn efter svavelförgiftning. En annan utmaning med att använda zeoliter som bärarmaterial är att palladiumet lätt sintrar till större partiklar och/eller jonutbyts med de sura sätena i zeoliten, vilket minskar CH4-oxideringsaktiviteten. Avhandlingen visar på att det är möjligt att optimera katalysatorns egenskaper genom att använda rätt bärarmaterial. Dock är det viktigt att studera hur katalysatorns betingelser påverkas under olika gas- och temperaturförhållanden, för att kunna dra korrekta slutsatser.
Driving Forces
Sustainable development
Subject Categories (SSIF 2011)
Chemical Process Engineering
Materials Chemistry
Other Chemical Engineering
Other Chemistry Topics
ISBN
978-91-7905-305-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4772
Publisher
Chalmers