Hot-Cavity Spectroscopy of Dark Pulse Kerr Combs in Microresonators
Paper in proceeding, 2019

Kerr frequency combs are generated through cascaded four-wave mixing in high-Q microresonators [1]. These devices are pumped with a continuous-wave laser and modulational instability (MI) is responsible for the growth of the initial comb lines. Since it is easier to satisfy the MI phase matching condition in the anomalous dispersion regime, most studies on Kerr combs have focused on anomalous dispersion microresonators. However, coherent microresonator combs can also take place in the normal dispersion regime. In these combs, phase matching is attained with the aid of the mode coupling between transverse modes of the microresonator [2]. One particularly interesting comb state that operates in the normal dispersion regime is the dark pulse Kerr comb [3]. The time domain pulses of these combs arise as interlocking switching waves that connect the upper and lower homogenous steady state solutions of the bi-stability curve in the continuous-wave-driven Kerr cavity [see Fig. (a)] [3]. These combs are of high interest as most nonlinear materials suitable for fabricating microresonators display normal dispersion in the visible and near infrared ranges. Moreover, these combs provide a much higher power conversion efficiency compared to bright-soliton combs, which makes them particularly useful for telecommunications [4].

Author

Seyedeh Bentolhoda Nazemosadat Arsanjani

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Attila Fülöp

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Òskar Bjarki Helgason

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Pei-Hsun Wang

Purdue University

Yi Xuan

Purdue University

Dan. E. Leaird

Purdue University

Minghao Qi

Purdue University

Enrique Silvestre

Universitat de Valencia

Andrew M. Weiner

Purdue University

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Vol. June 2019 8873415
978-1-7281-0469-0 (ISBN)

2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics
Munich, Germany,

Dark-Soliton Engineering in Microresonator Frequency Combs (DarkComb)

European Commission (EC) (EC/H2020/771410), 2018-05-01 -- 2023-04-30.

Mikroresonatorbaserade frekvenskamsgeneratorer för koherent kommunikation

Swedish Research Council (VR) (2016-03960), 2017-01-01 -- 2020-12-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Other Physics Topics

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/CLEOE-EQEC.2019.8873415

More information

Latest update

3/21/2023