Topographical Impact on Space Charge Injection, Accumulation and Breakdown in Polymeric HVDC Cable Interfaces
Doctoral thesis, 2020
While chemical characterization assessed certain features brought about in the preparation, physical assessments such as optical profilometry quantified the surfaces’ topographies. It was found that, the topography, featuring micro and sub micrometer geometrical variation, could be readily adopted in a mesoscopic modelling approach. Thereby, the geometric impact on local quantities of field strength, charge density and injection current density was estimated. Also, a set of roughness enhanced charge injection equations were derived for charge injection types such as Schottky, Fowler-Nordheim and hopping injection mechanisms. Such equations, featuring surface specific field (β) parameters, were employed in a one-dimensional bipolar charge transport model. Through careful model calibration against the results of space charge measurements, the parameters for roughness enhanced charge injection, together with parameters for charge transport, trapping, detrapping and recombination, were estimated. This calibration verified roughness enhanced injection and generated a description of the density of states in the material’s bulk. Furthermore, DC breakdown tests performed on the cable peelings for establishing the relationship between surface roughness and breakdown strength. An adopted multi-scale simulation approach, based on the calibrated parameter set, estimated local field strength, charge density and other quantities in the surface domain.
Conclusively, surface topography causes a local redistribution of the electric field, in turn locally increasing charge injection due to its strong field dependency at the rough asperities. Ultimately, coinciding high field strength and high charge density, at repeated positions along the surface, yields a lower breakdown strength. Such knowledge allows for tailoring the methodologies of surface preparation and quality control in HVDC cable systems, and other HV apparatuses. Control over mesoscopic surface effects will allow engineers to design ever more advanced and long-lasting HV components, meeting humanity’s renewable energy transmission needs for decades to come.
interfaces
XLPE
roughness
cable peelings
polymer surfaces
space charge
field enhancement factor
PEA
DC breakdown
extruded cable
roughness enhanced charge injection
HVDC
charge injection
Author
Espen Doedens
Chalmers, Electrical Engineering, Electric Power Engineering
Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part II - Simulations of Charge Transport
Energies,;Vol. 13(2020)p. 1750-1774
Journal article
Considerations on the impact of material mesostructure on charge injection at cable interfaces
IEEE Electrical Insulation Magazine,;Vol. 36(2020)p. 43-51
Journal article
Space Charge Accumulation at Material Interfaces in HVDC Cable Insulation Part I—Experimental Study and Charge Injection Hypothesis
Energies,;Vol. 13(2020)p. 2005-2021
Journal article
Roughness Enhanced Charge Injection and Field Dependent Conduction Mechanisms for Bipolar Charge Transport Models
Proceedings of the 2020 IEEE 3rd International Conference on Dielectrics, ICD 2020,;(2020)p. 413-417
Paper in proceeding
Enhanced charge injection in rough HVDC extruded cable interfaces
IEEE Transactions on Dielectrics and Electrical Insulation,;Vol. 26(2019)p. 1911-1918
Journal article
Local surface field- and charge distributions and their impact on breakdown voltage for HVDC cable insulation
;(2019)
Other conference contribution
Cable surface preparation: chemical, physical and electrical characterization and impact on breakdown voltage
Other conference contribution
Surface preparations on MV-sized cable ends for ramped DC breakdown studies
Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP,;(2016)p. 360-362
Paper in proceeding
Vissa ytor i HVDC-systemet blir till när kabeln ska skarvas eller terminernas ute på installationsplatsen. För att genom design och kvalitetskontroll kunna säkerställa hög kvalitet, måste man förstå hur ytans fysiska egenskaper relaterar till dess elektriska hållfasthet. Högt elektriskt fält inne kabelns isolation ger upphov till att laddningar injekteras (passerar ytan) från dess elektroder. Väl inne i isolationen, kan denna så kallade rymdladdning leda till att det elektriska fältet ändras lokalt, samt att själva isolationen degraderas fortare. Därför är det viktigt att minimera antalet laddningar som injekteras så att rymdladdningsackumulationen begränsas. I det här arbetet har olika ytor karakterisats och beräkningar utförts som kan förklara sambandet mellan ytråhet, laddningstäthet i isolationen och injektions-processen. Detta samband bygger på en geometrisk fältfördelning på mikroskala som lokalt stimulerar laddningsinjektionen. På så vis kan man förklara varför testobjektens elektriska hållfasthet hänger samman med ytans prepareringsmetod och därmed ytråhet, vilket har observerats i tidigare tester.
Denna avhandling bidrar till bättre förståelse för länken mellan ytans fysikaliska egenskaper och systemets elektriska robusthet. Kunskaperna kan användas för att säkerställa kvalitet och därmed förbättra livstiden av framtidens HVDC-kabelsystem. Dessa system kan på ett kostnadseffektivt sätt förbättra robustheten i elnät runt om i världen, så att de klarar av en allt högre integrationsandel av förnyelsebar energi.
Areas of Advance
Energy
Subject Categories
Other Electrical Engineering, Electronic Engineering, Information Engineering
Condensed Matter Physics
ISBN
978-91-7905-379-6
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4846
Publisher
Chalmers
Online - please e-mail PhdAdm.e2@chalmers.se in advance to get the password! (Chalmers Analysen private only)
Opponent: Severine Le Roy, Laplace Laboratory, University of Toulouse, France