Mesoporous Materials for Fast Charging Electrochemical Energy Storage
Doctoral thesis, 2020

High performing electrochemical energy storage (EES) devices are needed to cope with the increasing energy requirements of modern society. Electrode materials must store lots of energy, charge/discharge fast and be environmentally friendly. The present thesis discusses the advantages of using nanostructured porous materials as electrodes for fast-charging energy storage. High specific surface areas and short diffusion paths make this class of materials competitive for future EES applications. Structural, morphological and electrochemical characterizations were used to study the materials and their charge/discharge behaviours on both a fundamental and device level. Mesoporous titanium dioxide of different polymorphs can reversibly insert Li+ ions inside its structure. Ordered amorphous mesoporous titanium dioxide, produced by low temperature spray deposition, showed a quasi-linear voltage - capacity profile in organic electrolytes, suggesting a pseudocapacitive behaviour of insertion type. A high initial capacity loss is associated with the irreversible formation of lithium rich phases at the surface of the material. On the other hand, mesoporous anatase beads, produced via a solvothermal approach, were characterized by extended plateaus in the voltage profile, a typical feature for a faradaic insertion mechanism. However, the anatase beads electrodes also showed high pseudocapacitive contributions and delivered higher capacities and rate performance compared with the mesoporous amorphous titanium oxide material. By doping the mesoporous beads with different niobium concentrations, the semiconducting anatase acquired a metallic-like conductivity. High concentration of doping negatively affected the lithium insertion process, while a low level of niobium doping was beneficial for improving the rate performance of mesoporous anatase beads electrodes. The anatase material showed initial irreversible capacities in organic electrolytes based on carbonates. Limiting the potential window was found to be a suitable strategy to avoid parasitic reactions, although this limits the amount of storable energy. Moreover, by using an ionic liquid as electrolyte, the electrode/electrolyte interface can be stabilized, limiting the capacity fading. Finally, the mesoporous anatase beads were studied in a hybrid configuration against a porous carbon electrode, delivering very stable performance over 10000 cycles. Ordered mesoporous carbons of the CMK-8 type also showed interesting performance for different EES systems. When doped with nitrogen, CMK-8 carbons were able to store high amounts of lithium ions, both at low and fast rates of charging. In addition, CMK-8 carbons were used in hybrid supercapacitors as conductive electrodes to support surface redox reactions of active molecules added in water-based electrolytes. A pentyl viologen/bromide redox-active pair was studied on CMK-8 carbon electrodes at different operating voltages. By detailed studies of the electrochemistry of the system, high and stable energy and power densities were achieved.

electrochemical energy storage

redox-active electrolytes

mesoporous carbon

hybrid supercapacitors

fast charging storage

ordered mesoporous materials

mesoporous titanium dioxide

lithium-ion battery

Author

Giulio Calcagno

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Energilagringssystem kommer att spela en grundläggande roll i framtiden för energimarknaden. Ännu viktigare är att energilagring är en nödvändig komponent för övergången till en marknad för förnybar energi. Bland de olika systemen, kan elektrokemiska energilagringssystem (EES) användas inom olika områden, som till exempel att lagra och ge ström till bärbar elektronik och elfordon.
Olika slag av elektrokemisk energilagring inkluderar batterier och superkondensatorer. Medan batterier lagrar mycket energi genom kemiska reaktioner, lagrar superkondensatorer joner mycket snabbt på elektrodernas yta och kan därför leverera en hög effekt.
Materialforskning och teknikutveckling är viktigt för att förbättra energilagrens prestanda och möjliggöra övergången till ett mer effektivt och hållbart energisystem. Vi behöver råvaror som är rikligt förekommande och geopolitisk acceptabla samt nya batterikoncept med bättre prestanda och hållbarhet. Mitt forskningsämne fokuserar på nya elektrodmaterial, baserade på titandioxid och kol, för snabbladdningsapplikationer, så att man kan lagra en stor mängd energi på kort tid. Dessa nya material är porösa, som en tvättsvamp, med mycket små porer. Tack vare porerna har materialen mycket stor yta, upp till 2000 m2 per gram material. Stor yta och små porer möjliggör hög energilagring och stor effekt. Den här typen av material är nyckeln till att utveckla nya batterikoncept baserade på hybridisering av batterier och superkondensatorer med kombination av både hög energi och effekt.

Subject Categories (SSIF 2011)

Materials Engineering

Materials Chemistry

Infrastructure

Chalmers Materials Analysis Laboratory

Areas of Advance

Materials Science

ISBN

978-91-7905-378-9

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4845

Publisher

Chalmers

Digital

Online

More information

Latest update

11/3/2020