Proof of concept study for fuselage boundary layer ingesting propulsion
Journal article, 2021

Key results from the EU H2020 project CENTRELINE are presented. The research activities undertaken to demonstrate the proof of concept (technology readiness level-TRL 3) for the so-called propulsive fuselage concept (PFC) for fuselage wake-filling propulsion integration are discussed. The technology application case in the wide-body market segment is motivated. The developed performance bookkeeping scheme for fuselage boundary layer ingestion (BLI) propulsion integration is reviewed. The results of the 2D aerodynamic shape optimization for the bare PFC configuration are presented. Key findings from the high-fidelity aero-numerical simulation and aerodynamic validation testing, i.e., the overall aircraft wind tunnel and the BLI fan rig test campaigns, are discussed. The design results for the architectural concept, systems integration and electric machinery pre-design for the fuselage fan turbo-electric power train are summarized. The design and performance implications on the main power plants are analyzed. Conceptual design solutions for the mechanical and aerostructural integration of the BLI propulsive device are introduced. Key heuristics deduced for PFC conceptual aircraft design are presented. Assessments of fuel burn, NOx emissions, and noise are presented for the PFC aircraft and benchmarked against advanced conventional technology for an entry-into-service in 2035. The PFC design mission fuel benefit based on 2D optimized PFC aero-shaping is 4.7%.

Turbo-electric

Collaborative research

Boundary layer ingestion

Propulsive fuselage

Proof-ofconcept

Wake-filling

Multi-disciplinary aircraft design

Fan rig

Wind tunnel

Author

Arne Seitz

Bauhaus Luftfahrt

Anaïs Habermann

Bauhaus Luftfahrt

Fabian Peter

Bauhaus Luftfahrt

Florian Troeltsch

Bauhaus Luftfahrt

Alejandro Castillo Pardo

University of Cambridge

Biagio Della Corte

Delft University of Technology

Martjin Van Sluis

Delft University of Technology

Zdobyslaw Goraj

Warsaw University of Technology

Mariusz Kowalski

Warsaw University of Technology

Xin Zhao

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Tomas Grönstedt

Chalmers, Mechanics and Maritime Sciences (M2), Fluid Dynamics

Julian Bijewitz

MTU Aero Engines GmbH

Guido Wortmann

Rolls-Royce Deutschland

Aerospace

22264310 (eISSN)

Vol. 8 1 1-65 16

Subject Categories

Aerospace Engineering

Vehicle Engineering

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.3390/aerospace8010016

More information

Latest update

2/11/2021