Transient In Situ Studies on Supported Catalysts: CO2 Methanation and Methane Oxidation
Doctoral thesis, 2021
A range of powder catalysts were prepared by incipient wetness impregnation including Rh/MO (MO = SiO2, Al2O3, CeO2) and Pd/MO (MO = Al2O3 and ZSM-5) for CO2 hydrogenation and methane oxidation, respectively. The catalysts were studied in situ using high-energy X-ray diffraction, ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy as to follow structural dynamics and with diffuse reflectance infrared Fourier transform spectroscopy to monitor surface species. Transient measurements were designed and obtained data were analysed with phase sensitive detection in order to distinguish inactive (spectator) species from active ones.
For CO2 hydrogenation on the rhodium catalysts, an initial step of dissociation of carbon dioxide into carbon monoxide (and oxygen) occurs on the rhodium phase, and is enabled by the presence of hydrogen. The irreducible supports (SiO2 and Al2O3) show a minor contribution to the catalytic mechanism whereas for the CeO2 based catalysts, several kinds of carbonyls (b-CO, h-CO, m-CO) and carbonates (b-CO3, p-CO3) are active species. While more experimental data is needed as to establish the complete pathway, the activity of the carbonyl species suggests that the reaction follows a carbon monoxide based pathway such as the carbide route.
As for the detrimental effect of water on the methane oxidation, two aspects are shown to be of critical importance. The first concerns the build up of a low but strongly inhibiting hydroxyl coverage on the PdO nanoparticles hampering their redox dynamics and seemingly shifting the operating mechanism from a Mars-van Krevelen to a Langmuir-Hinshelwood type of mechanism that proceeds slower. The second is the support hydrophilicity, which contributes to inhibition of important active sites on the rim of the developed PdO nanoparticles through the formation of surface hydroxyls.
The knowledge about the catalyst structure-function relationships obtained in this work may be used to guide future catalyst design and synthesis, and catalyst operation, as to provide more efficient catalytic processes.
CH4 oxidation
Catalytic methanation
Hydrogenation
Sabatier reaction
CO2 reduction
HE-XRD
XAS
DRIFTS
AP-XPS
Heterogeneous catalysis
In situ spectroscopy
Author
Felix Hemmingsson
Chalmers, Chemistry and Chemical Engineering, Applied Chemistry
Structure-function relationship during CO2 methanation over Rh/Al2O3 and Rh/SiO2 catalysts at atmospheric pressure conditions
Catalysis Science and Technology,;Vol. 8(2018)p. 2686-2696
Journal article
Structure-function relationship for CO2 methanation over ceria supported Rh and Ni catalysts under atmospheric pressure conditions
Catalysis Science and Technology,;Vol. 9(2019)p. 1644-1653
Journal article
CO2 Methanation over Rh/CeO2 Studied with Infrared Modulation Excitation Spectroscopy and Phase Sensitive Detection
Catalysts,;Vol. 10(2020)
Journal article
Hampered PdO Redox Dynamics by Water Suppresses Lean Methane Oxidation over Realistic Palladium Catalysts
ChemCatChem,;Vol. 13(2021)p. 3765-3771
Journal article
Chasing PtO<inf>x</inf> species in ceria supported platinum during CO oxidation extinction with correlative operando spectroscopic techniques
Journal of Catalysis,;Vol. 409(2022)p. 1-11
Journal article
Trots att en kemisk reaktion är möjlig, sker den inte alltid inom en skälig tid. Att låta reaktionen ta en genväg möjliggör en snabbare omvandling under enklare betingelser, vilket minskar både energibehov och materialförluster. Detta kan åstadkommas med en katalysator som per definition är ett material som deltar i reaktionen utan att själv förbrukas. Vikten av katalytiska fenomen kan inte nog understrykas. De sker i allt från metabolism till kemikalieproduktion. En typisk industriell katalysator består aven aktiv fas, ofta en metall varpå reaktionen huvudsakligen sker, samt ett bärarmaterial som stabiliserar metallen och eventuellt även deltar i reaktionen.
Denna avhandling sammanfattar studier av katalytisk omvandling av koldioxid till metan över rhodiumpå olika bärarmaterial. Målet är att förstå de katalytiska reaktionsstegen som bestämmer katalysatorns funktion. Resultaten visar att reaktionen främst sker på metallen, där koldioxiden först förlorar syre till metallen för att sedan med väte stegvis byggas upp till metan. För en av katalysatorerna visade det sig dock att bärarmaterialet har en direkt inverkan på reaktionen. Vidare behandlas också katalytisk oxidation av metan för utsläppsprevention. Eftersom förbränningsavgaser har höga fukthalter har vattens inverkan på reaktionsstegen studerats. Även här spelar interaktionen mellan aktiv fas och bärarmaterialet en avgörande roll för katalysatorns funktion.
Kunskaperna som denna avhandling genererat öppnar upp för nya optimeringsmöjligheter och nya designkoncept för framtida katalysatorer.
Synergistic development of X-ray techniques and applicable thin oxides for sustainable chemistry
Swedish Research Council (VR) (2017-06709), 2018-04-04 -- 2021-12-31.
Atomistic Design of Catalysts
Knut and Alice Wallenberg Foundation (KAW2015.0058), 2016-01-07 -- 2021-06-30.
Driving Forces
Sustainable development
Areas of Advance
Transport
Energy
Materials Science
Subject Categories
Chemical Process Engineering
Chemical Engineering
Chemical Sciences
Infrastructure
Chalmers Materials Analysis Laboratory
ISBN
978-91-7905-460-1
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4927
Publisher
Chalmers