Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries
Journal article, 2021

Lithium‐sulfur (Li‐S) batteries are considered one of the most promising energy storage technologies, possibly replacing the state‐of‐the‐art lithium‐ion (Li‐ion) batteries owing to their high energy density, low cost, and eco‐compatibility. However, the migration of high‐order lithium polysulfides (LiPs) to the lithium surface and the sluggish electrochemical kinetics pose challenges to their commercialization. The interactions between the cathode and LiPs can be enhanced by the doping of the carbon host with heteroatoms, however with relatively low doping content (<10%) in the bulk of the carbon, which can hardly interact with LiPs at the host surface. In this study, the grafting of versatile functional groups with designable properties (e.g., catalytic effects) directly on the surface of the carbon host is proposed to enhance interactions with LiPs. As model systems, benzene groups containing N/O and S/O atoms are vertically grafted and uniformly distributed on the surface of expanded reduced graphene oxide, fostering a stable interface between the cathode and LiPs. The combination of experiments and density functional theory calculations demonstrate improvements in chemical interactions between graphene and LiPs, with an enhancement in the electrochemical kinetics, power, and energy densities.

lithium-sulfur batteries

surface functionalization

practical energy and power density

graphene

electrolyte lean condition

Show all persons

Published in

Small

1613-6810 (ISSN) 1613-6829 (eISSN)

Vol. 17 Issue 17 art. no 2007242

Research Project(s)

2D composites research at Chalmers

The Chalmers University Foundation (SC 2017-0099), 2018-01-01 -- 2020-12-31.

Categorizing

Subject Categories (SSIF 2011)

Physical Chemistry

Biomedical Laboratory Science/Technology

Cancer and Oncology

Identifiers

DOI

10.1002/smll.202007242

Related datasets

Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li‐S Batteries [dataset]

DOI: 10.1002/smll.202007242

More information

Latest update

3/17/2025