Studies of Molecular Interactions with Single Nanoparticles: Combining in Situ Plasmonic Nanospectroscopy with Transmission Electron Microscopy
Doctoral thesis, 2021
To enable studies of single particle-specific performance deterioration routes, I have in this thesis developed a correlative plasmonic nanospectroscopy and transmission electron microscopy approach for in situ studies of interactions between individual nanoparticles and molecules in the gas phase. As my main focus, I have applied the method to shed light on Cu nanoparticle oxidation, both in pure O2 and under CO oxidation reaction conditions. As a main result, I identified a distinct dependence of Cu oxidation on single particle-specific structural characteristics, such as grain boundaries. Furthermore, with in situ TEM imaging temperature-dependent competing oxidation mechanisms were observed and their corresponding single particle plasmonic signatures were mapped by electron energy-loss spectroscopy.
As a second example, in hydrogen sorption cycling of polycrystalline Pd nanoparticles grain-growth was observed that slowed down sorption kinetics, whereby an explanation for the deterioration of Pd-based hydrogen sensors was identified.
oxidation
plasmonic nanospectroscopy
heterogeneous catalysis
localized surface plasmon resonance sensing
grain boundary
transmission electron microscopy
single nanoparticle
palladium hydride
dark-field scattering spectroscopy
Author
Sara Nilsson
Chalmers, Physics, Chemical Physics
Resolving single Cu nanoparticle oxidation and Kirkendall void formation with in situ plasmonic nanospectroscopy and electrodynamic simulations
Nanoscale,;Vol. 11(2019)p. 20725-20733
Journal article
Probing the role of grain boundaries in single Cu nanoparticle oxidation by in situ plasmonic scattering
Physical Review Materials,;Vol. 6(2022)
Journal article
Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures
Nanoscale,;Vol. In Press(2022)
Journal article
Copper catalysis at operando conditions - bridging the gap between single nanoparticle probing and catalyst-bed-averaging
Nature Communications,;Vol. 11(2020)
Journal article
The Role of Grain Boundary Sites for the Oxidation of Copper Catalysts during the CO Oxidation Reaction
ACS Nano,;Vol. 17(2023)p. 20284-20298
Journal article
Grain-growth mediated hydrogen sorption kinetics and compensation effect in single Pd nanoparticles
Nature Communications,;Vol. 12(2021)
Journal article
Jag har i min avhandling utvecklat en metod för att undersöka katalytiska nanopartiklar av metall som är 10 000 gånger mindre än tvärsnittet av ett hårstrå. Dessa metallpartiklar utgör det aktiva materialet i katalysatorer men partiklarna kan inaktiveras, så att de inte längre deltar i reaktionen, t.ex. på grund av oxidering. För att reaktionen ska ske effektivt krävs kartläggning av vilka egenskaper hos partiklarna som gör att de inaktiveras. Jag har för kopparpartiklar påvisat att partikelns struktur har en inverkan på hur fort inaktivering genom oxideringen sker. Det fina med min metod är att jag studerar partiklarna en och en, och kan då se exakt vad de har för struktur och på så sätt se bortom ett medelvärde över en större grupp partiklar. Därmed är det möjligt att urskilja hur små skillnader partiklarna emellan kan ge ett stort utslag för deras katalytiska funktion.
Subject Categories
Physical Sciences
ISBN
978-91-7905-489-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4956
Publisher
Chalmers
Online on Zoom, Contact Christopher Tiburski for password tiburski@chalmers.se
Opponent: Sarah Haigh, The University of Manchester