Air-gap spinning of lignin-cellulose fibers
Doctoral thesis, 2021
In accordance with the hypothesis, it was found that it was possible to gain advantages from both materials, by combining cellulose and lignin. Cellulose is a stiff and linear polymer that contributed to the strength of the fiber, while lignin, with its high carbon content, enhanced the final yield after conversion into carbon fiber.
Additionally, solutions that contained both lignin and cellulose could be air-gap spun at substantially higher draw ratios than pure cellulose solutions. This improvement could not be explained with the shear rheology results, however, based on measurements of the take-up force during spinning it was proposed that lignin stabilize against diameter fluctuations during spinning. To analyze how lignin affects the coagulation of lignin-cellulose fibers the total mass transport during coagulation was studied. Different coagulation baths were used, and it was found that minor parts of the lignin leached out, the amount correlated to the lignin solubility in the coagulation bath. Nevertheless, from the results it could also be concluded that the addition of lignin to a cellulose solution did not hinder the coagulation of the fibers. Regarding the fiber structure, it was possible to analyze the molecular order of cellulose and lignin separately and the lignin was found to be completely disordered also in a stretched fiber. In contrast, cellulose attained a preferred molecular orientation even in fibers with high lignin ratios. To further assess the full potential of the system, the lignin-cellulose fibers that were produced were also converted into carbon fibers, and the mechanical properties are promising. In summary, it was considered that lignin-cellulose based carbon fibers have great potential in becoming commercially available if efforts are continued in increasing the strength and stiffness of the fibers even further together with the implementation of efficient solvent recycling.
cellulose
carbon fibers
ionic liquid
lignin
air-gap spinning
Author
Jenny Bengtsson
Chalmers, Chemistry and Chemical Engineering, Chemical Technology
Improved yield of carbon fibres from cellulose and kraft lignin
Holzforschung,;Vol. 72(2018)p. 1007-1016
Journal article
Mass transport and yield during spinning of lignin-cellulose carbon fiber precursors
Holzforschung,;Vol. 73(2019)p. 509-516
Journal article
Identifying breach mechanism during air-gap spinning of lignin–cellulose ionic-liquid solutions
Journal of Applied Polymer Science,;Vol. 136(2019)
Journal article
Disassociated molecular orientation distributions of a composite cellulose–lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering
Carbohydrate Polymers,;Vol. 254(2021)
Journal article
The challenge of predicting spinnability: Investigating benefits of adding lignin to cellulose solutions in air-gap spinning
Journal of Applied Polymer Science,;Vol. 138(2021)
Journal article
Kolfiber tillverkas genom att en polymerfiber stegvis genomgår termiska behandlingar. I sökandet efter nya utgångsmaterial för kolfibertillverkning har lignin länge ansetts vara ett lovande alternativ. Lignin är en kolrik makromolekyl som finns i träd och andra växter. Det är en förhållandevis billig förnyelsebar resurs, eftersom det kan utvinnas som en biprodukt vid ett pappersmassabruk. Däremot har kolfibrer tillverkade av enbart lignin ännu inte kunnat leva upp till de krav på mekaniska egenskaper, styrka och styvhet, som krävs. Av denna anledning har fibrer tillverkade av blandningar av lignin med annan polymer numera fått allt större uppmärksamhet.
I denna avhandling användes en blandning av lignin och cellulosa för att tillverka fibrer genom tekniken luftgapsspinning. Spinntekniken går ut på att en polymer, eller en blandning som i detta fall, löses upp och därefter extruderas och omformas till kontinuerliga fibrer. Fibrerna fixeras därefter i ett koagulationsbad, som i detta arbete var vatten. Arbetet visar hur blandningen av lignin och cellulosa i lösningen påverkar de olika stegen av tillverkningsprocessen. Under arbetet analyserades lösningens sträckbarhet, koaguleringsförloppet och fibrernas slutgiltiga egenskaper. Sammanfattningsvis visar fibrer tillverkade av cellulosa och lignin lovande mekaniska egenskaper, och anses ha stor potential som framtida utgångsmaterial för kolfiberproduktion.
Subject Categories
Chemical Engineering
Areas of Advance
Materials Science
ISBN
978-91-7905-491-5
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4958
Publisher
Chalmers
2034 (Pater Noster), Kemigården 4
Opponent: Prof. Michael Hummel, Department of Bioproducts and Biosystems, Aalto University, Finland