Efficient spot welding sequence simulation in compliant variation simulation
Journal article, 2021

Geometrical variation is one of the sources of quality issues in a product. Spot welding is an operation that impacts the final geometrical variation of a sheet metal assembly considerably. Evaluating the outcome of the assembly, considering the existing geometrical variation between the components, can be achieved using the Method of Influence Coefficients (MIC), based on the Finite Element Method (FEM). The sequence with which the spot welding operation is performed influences the final geometrical deformations of the assembly. Finding the optimal sequence that results in the minimum geometrical deformation is a combinatorial problem that is experimentally and computationally expensive. Traditionally, spot welding sequence optimization strategies have been to simulate the geometrical variation of the spot-welded assembly after the assembly has been positioned in an inspection fixture. In this approach, the calculation of deformation after springback is one of the most time-consuming steps. In this paper, a method is proposed where the springback calculation in the inspection fixture is bypassed during the sequence evaluation. The results show a significant correlation between the proposed method of weld relative displacements evaluation in the assembly fixture and the assembly deformation in the inspection fixture. Evaluating the relative weld displacement makes each assembly simulation less time-consuming, and thereby, sequence optimization time can be reduced by up to 30%, compared to the traditional approach.

computer-integrated manufacturing

Modeling and simulation


inspection and quality control

Welding and joining


Roham Sadeghi Tabar

Chalmers, Industrial and Materials Science, Product Development

Samuel Lorin

Fraunhofer-Chalmers Centre

Christoffer Cromvik

Fraunhofer-Chalmers Centre

Lars Lindkvist

Chalmers, Industrial and Materials Science, Product Development

Kristina Wärmefjord

Chalmers, Industrial and Materials Science, Product Development

Rikard Söderberg

Chalmers, Industrial and Materials Science

Journal of Manufacturing Science and Engineering, Transactions of the ASME

1087-1357 (ISSN) 15288935 (eISSN)

Vol. 143 7 071009

Smart Assembly 4.0

Swedish Foundation for Strategic Research (SSF) (RIT15-0025), 2016-05-01 -- 2021-06-30.

Subject Categories

Production Engineering, Human Work Science and Ergonomics

Manufacturing, Surface and Joining Technology

Control Engineering

Areas of Advance




More information

Latest update