Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations
Journal article, 2021

This paper presents an innovative method of prestressing carbon fibre reinforced polymer (CFRP) plates used as externally bonded reinforcement for flexural strengthening of reinforced concrete (RC) beams. The proposed method aims to achieve self-anchorage of the prestressed CFRP plate and thus eliminate the need for conventional mechanical anchorage at its ends. Experimental tests of RC beams in four-point bending were conducted to investigate the strengthening efficiency of the self-anchored prestressed CFRP plate. The experimental results showed that using the self-anchored prestressed CFRP significantly improved the flexural performance of the strengthened beam in terms of bending stiffness, crack widths, and load-carrying capacity. The utilisation ratio of the prestressed CFRP plate reached 81% at its debonding. Numerical analyses using nonlinear finite element (FE) method were conducted to model the tested specimens. Based on the reliable simulation of flexural cracks and crack-induced CFRP debonding, parametric studies were conducted using FE analyses, in order to investigate the effect of prestressing levels and the CFRP plate's stiffness on the flexural behaviour. Recommendations were then made for selecting a proper prestressing level and the mechanical properties of CFRP plates.

Reinforced concrete (RC)

Intermediate crack-induced debonding

Carbon fibre reinforced polymer (CFRP)

Nonlinear finite element analysis

Self-anchorage

Flexural strengthening

Prestress

Author

Jincheng Yang

Chalmers, Architecture and Civil Engineering, Structural Engineering

Morgan Johansson

Norconsult AB

Chalmers, Architecture and Civil Engineering, Structural Engineering

Mohammad al-Emrani

Chalmers, Architecture and Civil Engineering, Structural Engineering

Reza Haghani Dogaheh

Chalmers, Architecture and Civil Engineering, Structural Engineering

Engineering Structures

0141-0296 (ISSN)

Vol. 243 112687

Sustainable Refurbishment of Existing Bridges (SUREBridge)

European Commission (EC) (SUREBridge), 2015-10-01 -- 2018-12-31.

Subject Categories

Applied Mechanics

Building Technologies

Composite Science and Engineering

DOI

10.1016/j.engstruct.2021.112687

More information

Latest update

6/30/2021