Frequency-comb-calibrated swept-wavelength interferometry
Journal article, 2021

Lasers are often used to characterize samples in a non-destructive manner and retrieve sensing information transduced in changes in amplitude and phase. In swept wavelength interferometry, a wavelength-tunable laser is used to measure the complex response (i.e. in amplitude and phase) of an optical sample. This technique leverages continuous advances in rapidly tunable lasers and is widely used for sensing, bioimaging and testing of photonic integrated components. However, the tunable laser requires an additional calibration step because, in practice, it does not tune at a constant rate. In this work, we use a self-referenced frequency comb as an optical ruler to calibrate the laser used in swept-wavelength interferometry and optical frequency domain reflectometry. This allows for realizing high-resolution complex spectroscopy over a bandwidth exceeding 10 THz. We apply the technique to the characterization of low-loss integrated photonic devices and demonstrate that the phase information can disentangle intrinsic from coupling losses in the characterization of high-Q microresonators. We also demonstrate the technique in reflection mode, where it can resolve attenuation and dispersion characteristics in integrated long spiral waveguides.

Author

Krishna Sundar Twayana

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Zhichao Ye

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Òskar Bjarki Helgason

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Kovendhan Vijayan

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Magnus Karlsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Victor Torres Company

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Optics Express

1094-4087 (ISSN) 10944087 (eISSN)

Vol. 29 15 24363-24372

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Other Physics Topics

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1364/OE.430818

More information

Latest update

7/30/2021