What is the optimal robust environmental and cost-effective solution for building renovation? Not the usual one
Journal article, 2021

Buildings are responsible for a large share of CO2 emissions in the world. Building renovation is crucial to decrease the environmental impact and meet the United Nations climate action goals. However, due to buildings’ long service lives, there are many uncertainties that might cause a deviation in the results of a predicted retrofit outcome. In this paper, we determine climate-friendly and cost-effective renovation scenarios for two typical buildings with low and high energy performance in Switzerland using a methodology of robust optmization. First, we create an integrated model for life cycle assessment (LCA) and life cycle cost analysis (LCCA). Second, we define possible renovation measures and possible levels of renovation. Third, we identify and describe the uncertain parameters related to the production, replacement and dismantling of building elements as well as the operational energy use in LCCA and LCA. Afterwards, we carry out a robust multi-objective optimization to identify optimal renovation solutions. The results show that the replacement of the heating system in the building retrofit process is crucial to decrease the environmental impact. They also show that for a building with already good energy performance, the investments are not paid off by the operational savings. The optimal solution for the building with low energy performance includes the building envelope renovation in combination with the heating system replacement. For both buildings, the optimal robust cost-effective and climate-friendly solution is different from the deep renovation practice promoted to decrease the energy consumption of a building.

Life cycle cost

Life cycle assessment

Robust optimization

Uncertainty quantification

Author

Alina Galimshina

Swiss Federal Institute of Technology in Zürich (ETH)

Maliki Moustapha

Swiss Federal Institute of Technology in Zürich (ETH)

Alexander Hollberg

Chalmers, Architecture and Civil Engineering, Building Technology

Pierryves Padey

Haute Ecole Specialisee de Suisse occidentale

Sébastien Lasvaux

Haute Ecole Specialisee de Suisse occidentale

Bruno Sudret

Swiss Federal Institute of Technology in Zürich (ETH)

Guillaume Habert

Swiss Federal Institute of Technology in Zürich (ETH)

Energy and Buildings

0378-7788 (ISSN)

Vol. 251 111329

Subject Categories

Construction Management

Environmental Analysis and Construction Information Technology

Energy Systems

DOI

10.1016/j.enbuild.2021.111329

More information

Latest update

9/3/2021 1