Free vibrations of bi-stable pressurized FG plate-type MEMS
Other conference contribution, 2021
Recently, it has been shown that besides initially curved micro-plates, pressurized flat ones can also experience bi-stable behavior that enjoys many potential applications in designing high sensitive MEMS sensors [1]. In the sequence of ref. [1], the present work aims to investigate free vibrations of pressurized electrically actuated thin micro-plates made of FGM. To this end, the geometric nonlinear in-plane and out-of-plane governing equations of motion are obtained using the Hamilton principle and reduced to an initial value problem associated with the first transversal eigenmode of the structure through a multi-term Galerkin projection method. Having the reduced equation of motion, the eigenvalue equation governing the free vibrations of the micro-plate around its equilibrium configuration is then obtained. Afterward, the oscillatory behavior of pressurized plate-type MEMS is studied. It has been observed that the fundamental frequency of the system suddenly drops to zero when the micro-plate faces the limit points in its equilibrium path. The present findings are compared and successfully validated by 3D FE simulations carried out in COMSOL Multiphysics commercial software for a Silicon-Copper graded micro-plate with dimensions as same as the case studied in ref. [1], the power-law index is set to n=0.5, and the micro-plate is assumed to be subjected to 3kPa differential pressure in the opposite direction of the electrical attraction.
References
[1] A.R. Askari, "Bi-stability of pressurized electrically actuated flat micro-plates", Int. J. Solids Struct., 178-179, 167 - 179 (2019).
Bi-stability
Functionally Graded Materials
Micro-plates
Author
Amir R. Askari
Hakim Sabzevari University
Peter Folkow
Chalmers, Mechanics and Maritime Sciences (M2), Dynamics
Jan Awrejcewicz
Lodz University of Technology
Keele, United Kingdom,
Subject Categories (SSIF 2011)
Applied Mechanics
Computational Mathematics