The closures of test configurations and algebraic singularity types
Journal article, 2022

Given a Kähler manifold X with an ample line bundle L, we consider the metric space of finite energy geodesic rays associated to the Chern class c1(L). We characterize rays that can be approximated by ample test configurations. At the same time, we also characterize the closure of algebraic singularity types among all singularity types of quasi-plurisubharmonic functions, pointing out the very close relationship between these two seemingly unrelated problems. By Bonavero's holomorphic Morse inequalities, the arithmetic and non-pluripolar volumes of algebraic singularity types coincide. We show that in general the arithmetic volume dominates the non-pluripolar one, and equality holds exactly on the closure of algebraic singularity types. Analogously, we give an estimate for the Monge–Ampère energy of a general finite energy ray in terms of the arithmetic volumes along its Legendre transform. Equality holds exactly for rays approximable by test configurations. Various other cohomological and potential theoretic characterizations are given in both settings. As applications, we give a concrete formula for the non-Archimedean Monge–Ampère energy in terms of asymptotic expansion, and show the continuity of the projection map from L1 rays to non-Archimedean rays.

Singularity type

Legendre transform

Geodesic

Test configuration

Plurisubharmonic function

Author

T. Darvas

University of Maryland

Mingchen Xia

University of Gothenburg

Chalmers, Mathematical Sciences, Algebra and geometry

Advances in Mathematics

0001-8708 (ISSN) 1090-2082 (eISSN)

Vol. 397 108198

Subject Categories (SSIF 2011)

Algebra and Logic

Geometry

Mathematical Analysis

DOI

10.1016/j.aim.2022.108198

More information

Latest update

1/24/2022