Graphene Oxide Reinforced Magnetic FeCoNiCuZn High Entropy Alloy through Electrodeposition
Journal article, 2022

The production of high entropy alloy-based nanocomposites is an exciting yet challenging area in terms of its scalability and industrial applications. Here we developed graphene oxide (GO) reinforced FeCoNiCuZn high entropy alloy (HEA) nanocomposites through an electrochemical approach using aqueous medium in a single step. Transmission electron microscopy observations confirmed uniformly distributed nanocrystalline dual FCC phase quinary alloy nanoparticles throughout the GO layers. On the other hand, the presence of GO affects the electrochemical reduction of multiple elements during alloy formation in the deposition process, which often leads to dual phases with slight deviations in alloy composition, unlike the pure metal-GO composites. Additionally, incorporation of GO has not shown any effect on the ferromagnetic nature of FeCoNiCuZn HEA with saturation magnetization (Ms) ∼ 43.5 emu g−1. The obtained saturation magnetization is relatively higher compared to the existing reported magnetic nanoparticles with GO. Hence, this technique shows its potential applicability and provides an old technique yet a new approach for synthesizing GO-HEA nanocomposites for various magnetic applications.

Electrodeposition

graphene-oxide

FeCoNiCuZn

magnetic properties

High entropy alloys

charcterization

Author

Chokkakula L.P. Pavithra

Indian Institute of Technology

Reddy Kunda Siri Kiran Janardhana

Indian Institute of Technology

Kolan Madhav Reddy

Shanghai Jiao Tong University

Chandrasekhar Murapaka

Indian Institute of Technology

Uta Klement

Chalmers, Industrial and Materials Science, Materials and manufacture

Suhash Ranjan Dey

Indian Institute of Technology

Journal of the Electrochemical Society

0013-4651 (ISSN) 1945-7111 (eISSN)

Vol. 169 2 022501

Microstructural evolution and structure-property correlations in FeCoNi based multi component alloy thin films

Swedish Research Council (VR) (2018-07086), 2020-01-01 -- 2022-12-31.

Subject Categories

Mechanical Engineering

Materials Engineering

Materials Chemistry

Areas of Advance

Materials Science

DOI

10.1149/1945-7111/ac4e56

More information

Latest update

4/5/2022 6