Milliarcsecond Localization of the Repeating FRB 20201124A
Journal article, 2022

Very long baseline interferometric (VLBI) localizations of repeating fast radio bursts (FRBs) have demonstrated a diversity of local environments: from nearby star-forming regions to globular clusters. Here we report the VLBI localization of FRB 20201124A using an ad hoc array of dishes that also participate in the European VLBI Network (EVN). In our campaign, we detected 18 bursts from FRB 20201124A at two separate epochs. By combining the visibilities from both epochs, we were able to localize FRB 20201124A with a 1 sigma uncertainty of 2.7 mas. We use the relatively large burst sample to investigate astrometric accuracy and find that for greater than or similar to 20 baselines (greater than or similar to 7 dishes) we can robustly reach milliarcsecond precision even using single-burst data sets. Subarcsecond precision is still possible for single bursts, even when only similar to 6 baselines (four dishes) are available. In such cases, the limited uv coverage for individual bursts results in very high side-lobe levels. Thus, in addition to the peak position from the dirty map, we also explore smoothing the structure in the dirty map by fitting Gaussian functions to the fringe pattern in order to constrain individual burst positions, which we find to be more reliable. Our VLBI work places FRB 20201124A 710 +/- 30 mas (1 sigma uncertainty) from the optical center of the host galaxy, consistent with originating from within the recently discovered extended radio structure associated with star formation in the host galaxy. Future high-resolution optical observations, e.g., with Hubble Space Telescope, can determine the proximity of FRB 20201124A's position to nearby knots of star formation.

Author

K. Nimmo

University of Amsterdam

Netherlands Institute for Radio Astronomy (ASTRON)

D. M. Hewitt

University of Amsterdam

J. W. T. Hessels

Netherlands Institute for Radio Astronomy (ASTRON)

University of Amsterdam

Franz Kirsten

Netherlands Institute for Radio Astronomy (ASTRON)

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

B. Marcote

Joint Institute for VLBI in Europe (JIVE)

U. Bach

Max Planck Society

R. Blaauw

Netherlands Institute for Radio Astronomy (ASTRON)

M. Burgay

Istituto nazionale di astrofisica (INAF)

A. Corongiu

Istituto nazionale di astrofisica (INAF)

R. Feiler

Nicolaus Copernicus University

M. P. Gawronski

Nicolaus Copernicus University

M. Giroletti

Istituto nazionale di astrofisica (INAF)

R. Karuppusamy

Max Planck Society

A. Keimpema

Joint Institute for VLBI in Europe (JIVE)

M. A. Kharinov

Russian Academy of Sciences

Michael Lindqvist

Chalmers, Space, Earth and Environment, Onsala Space Observatory

G. Maccaferri

Istituto nazionale di astrofisica (INAF)

A. Melnikov

Russian Academy of Sciences

A. Mikhailov

Russian Academy of Sciences

O. S. Ould-Boukattine

University of Amsterdam

Z. Paragi

Joint Institute for VLBI in Europe (JIVE)

M. Pilia

Istituto nazionale di astrofisica (INAF)

A. Possenti

Istituto nazionale di astrofisica (INAF)

M. P. Snelders

University of Amsterdam

G. Surcis

Istituto nazionale di astrofisica (INAF)

M. Trudu

Istituto nazionale di astrofisica (INAF)

T. Venturi

Istituto nazionale di astrofisica (INAF)

Wouter Vlemmings

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

N. Wang

Chinese Academy of Sciences

Jun Yang

Chalmers, Space, Earth and Environment, Onsala Space Observatory

J. Yuan

Chinese Academy of Sciences

Astrophysical Journal Letters

2041-8205 (ISSN) 2041-8213 (eISSN)

Vol. 927 1 L3

Subject Categories

Astronomy, Astrophysics and Cosmology

Other Physics Topics

Geosciences, Multidisciplinary

DOI

10.3847/2041-8213/ac540f

More information

Latest update

9/15/2023