The Effect of Hf Addition on the Boronizing and Siliciding Behavior of CoCrFeNi High Entropy Alloys
Journal article, 2022
The effect of a boronizing and siliciding process on CoCrFeNiHf0.1–0.42 high entropy alloys was examined in this study. When increasing the amount of added Hf in CoCrFeNiHfx, the structure of the alloys gradually transformed from single-phase FCC to firstly Ni7Hf2 + FCC, and finally to C15 Laves and FCC phases. The boronizing/siliciding process resulted in the formation of a silicon-rich layer and a boride layer (BL). Increasing the amount of Hf in the alloys resulted in a decrease in the combined layer thickness, which was measured for CoCrFeNi, CoCrFeNiHf0.1, CoCrFeNiHf0.2, and CoCrFeNiHf0.42 to be 70 µm, 63 µm, 20 µm, and 15 µm, respectively. In contrast, the thickness of the transition zone/diffusion zone increased with more Hf in the alloys. While silicon atoms were gathered close to the BL, they were not transferred into the CoCrFeNi substrate. In contrast to the observation for CoCrFeNi, Si atoms penetrated through the Ni-rich phase (Ni7Hf2) in the CoCrFeNiHfx alloys. Furthermore, the Cr-B rich area (Cr5B3) in the coating limited the transport of Si into the CoCrFeNiHfx substrates. XRD analysis showed that the BL contained Ni2Si, FeB, Fe2B, Co2B, and Cr5B3 phases.
surface hardening
boriding
Laves phase
boronizing
high entropy alloy