A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants – A Swedish case study
Journal article, 2022

The need to reduce global CO2 emissions is urgent and might be facilitated by carbon capture and storage (CCS) technologies. Sweden has a goal to reach net-zero emissions by 2045. Negative emissions and bio-CCS (BECCS) have been proposed as important strategies to reach this target at the lowest cost. The Swedish district heating sector constitutes a large potential for BECCS, with biogenic point sources of CO2 in the form of combined heat and power (CHP) plants that burn biomass residues from the forest industry. This study analyzes the potential of CO2 capture in 110 existing Swedish biomass or waste-fired CHP plants. Process models of CHP steam cycles give the impacts of absorption-based CCS on heat and electricity production, while a district heating system unit commitment model gives the impact on plant operation and the potential for CO2 capture. The results provide a cost for carbon capture and transport to the nearest harbor by truck: up to 19.3 MtCO2/year could be captured at a cost in the range of 45–125 €/tCO2, corresponding to around 40% of the total fossil fuel-based Swedish CO2 emissions. This would be sufficient to meet a proposed target of 3–10 Mt/year of BECCS by 2045.

District heating

Negative emissions

Combined heat and power


Heat integration


Johanna Beiron

Chalmers, Space, Earth and Environment, Energy Technology

Fredrik Normann

Chalmers, Space, Earth and Environment, Energy Technology

Filip Johnsson

Chalmers, Space, Earth and Environment, Energy Technology

International Journal of Greenhouse Gas Control

1750-5836 (ISSN)

Vol. 118 103684

Driving Forces

Sustainable development

Subject Categories

Energy Engineering

Other Environmental Engineering

Energy Systems

Areas of Advance




More information

Latest update