Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State
Journal article, 2022

Acceptor copolymers with low lowest unoccupied molecular orbital (LUMO) energy levels are key materials for organic electronics. In the present work, quaternization of pyridine-flanked diketopyrrolopyrrole (PyDPPPy) is used to lower the LUMO energy level of the resulting monomer (MePyDPPPy) by as much as 0.7 eV. The drastically changed electronic properties of MePyDPPPy hinder a second methylation step even in an excess of trimethyloxonium tetrafluoroborate and thereby give access to the asymmetric functionalization of N-heterocycle-flanked DPP building blocks. The corresponding n-type polymeric ionene PMePyDPPPyT2 with bithiophene as comonomer forms thixotropic organogels with the p-type polythiophene P(g42T-TT), indicative of specific cross-interactions between this couple of copolymers. Gelation of polymer blend solutions, which is absent for other couples of p-type/ n-type polymers, is of general interest for (co)processing and orientation of different electronic polymers simultaneously into films or filaments. Detailed optical and electronic characterization reveals that films processed from organogels exhibit ground-state electron transfer (GSET) enabled by suitably positioned highest occupied molecular orbital (HOMO) and LUMO energy levels of P(g42T-TT) (-4.07 eV) and PMePyDPPPyT2 (-4.20 eV), respectively. Furthermore, molecular interactions related to gelation and GSET do not appear to significantly influence the morphology of the polymer blend films.

Author

Dominik Stegerer

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Technische Universität Chemnitz

Martin Pracht

Technische Universität Chemnitz

Florian Günther

University of Sao Paulo (USP)

Hengda Sun

Linköping University

Kevin Preis

Technische Universität Chemnitz

Mario Zerson

Technische Universität Chemnitz

Wafa Maftuhin

University of Freiburg

Wen Liang Tan

Monash University

Renee Kroon

Linköping University

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Christopher R. McNeill

Monash University

S. Fabiano

Linköping University

Michael Walter

University of Freiburg

Till Biskup

Universität des Saarlandes

Sibylle Gemming

Technische Universität Chemnitz

Robert Magerle

Technische Universität Chemnitz

Christian Müller

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

M. Sommer

Technische Universität Chemnitz

Macromolecules

00249297 (ISSN) 15205835 (eISSN)

Vol. 55 12 4979-4994

Double Doping of Semiconducting Polymers

Swedish Research Council (VR) (2018-03824), 2018-01-01 -- 2021-12-31.

Subject Categories

Polymer Chemistry

Materials Chemistry

Condensed Matter Physics

DOI

10.1021/acs.macromol.2c00655

More information

Latest update

3/7/2024 9