Oxidative dissolution of UO2 by α-radiolysis
Doctoral thesis, 2022
The oxidative dissolution of UO2-based materials has been experimentally studied and modelled in this work. Oxidation and dissolution of UO2 pellets were studied under an external irradiation source, in both Ar and H2 atmospheres. In the Ar atmosphere, the oxidation of UO2 was shown to take place through the incorporation of a significant U(V) oxidation state fraction. In the H2 atmosphere, the surface was protected during exposure to the external irradiation source against both surface oxidation and dissolution. Very low dissolution yields were found in the study of SIMFUEL, with H2 catalytically activated on the pellet surface, efficiently causing catalytic decomposition of H2O2 without leading to oxidative dissolution of the UO2 matrix. Highly Pu-doped MOX pellets showed a strong oxidative dissolution in the Ar atmosphere. This was somewhat mitigated in the D2 atmosphere. The modelled data were shown to accurately replicate the experimental results. Dissolved U(VI) was shown to be strongly reductively precipitated on corroding iron foils under anoxic conditions. This decreased the initially dissolved concentrations by three orders of magnitude over relatively short periods.
This work furthers the understanding of oxidative dissolution of UO2-based materials under α-radiation fields and the effect of reducing agents present in the canister.
hydrogen effect
kinetics
MOX
α-radiolysis
dose rate
UO2
ε-particles
Author
Niklas Hansson
Chalmers, Chemistry and Chemical Engineering, Energy and Material
The fate of hydroxyl radicals produced during H2O2 decomposition on a SIMFUEL surface in the presence of dissolved hydrogen
Journal of Nuclear Materials,;Vol. 507(2018)p. 38-43
Journal article
The interaction of molecular hydrogen with α-radiolytic oxidants on a (U,Pu)O2 surface
Journal of Nuclear Materials,;Vol. 505(2018)p. 54-61
Journal article
XPS study of external α-radiolytic oxidation of UO2 in the presence of argon or hydrogen
Journal of Nuclear Materials,;Vol. 543(2021)
Journal article
Geometrical aspects of alpha dose rates from UO<inf>2</inf> based fuels
Radiation Physics and Chemistry,;Vol. 199(2022)
Journal article
Modelling radiation-induced oxidative dissolution of UO<inf>2</inf>-based spent nuclear fuel on the basis of the hydroxyl radical mediated surface mechanism: Exploring the impact of surface reaction mechanism and spatial and temporal resolution
Journal of Nuclear Materials,;Vol. 578(2023)
Journal article
Hansson, N., Ekberg, C., & Spahiu, K. Oxidative dissolution of highly doped MOX under D2 and Ar atmospheres
Influence of groundwater composition on the reductive precipitation of U(VI) on corroding iron foil surfaces
Journal of Nuclear Materials,;Vol. 577(2023)
Journal article
Exploring H<inf>2</inf>-effects on radiation-induced oxidative dissolution of UO<inf>2</inf>-based spent nuclear fuel using numerical simulations
Radiation Physics and Chemistry,;Vol. 210(2023)
Journal article
Vid gränssnittet mellan bränsle och vatten orsakar bränslets starka α-strålningsfält omfattande radiolys, vilket skapar lokalt oxiderande förhållanden. Detta är främst via radiolysprodukten H2O2 som är en stark oxidant av UO2-matrisen, vilket ökar oxidationstillståndet från det olösliga U(IV) till mycket mer lösliga U(VI). Den oxidativa upplösningen av UO2 beror dock på den kemiska sammansättningen av bränslet och lösningssammansättningen. Anoxisk korrosion av järninsättningarna i kopparkapseln producerar järnkorrosionsprodukter och stora vätgastryck. Dessa produkter kan kraftigt skydda kärnbränslet mot oxidativ upplösning.
I detta arbete har den α-radiolytiska oxidativa upplösningen av olika UO2-baserade bränslemodeller studerats genom både modellering och experiment. Den kraftiga effekten av metalliska fissionsprodukt-partiklar som katalyserar den skyddande vätgaseffekten visades. Vätgaseffekten var också närvarande vid oxidativ upplösning av UO2 och plutonium-dopat MOX bränsle där den bidrog till en faktor 10 lägre upplösning. Modellerade data kunde beskriva de experimentella resultaten väl.
Arbetet visar att flera processer kan skydda det använda kärnbränslet från upplösning i ett kapsel-haveriscenario följt av grundvattenintrång. Detta innebär att själva bränslet kan anses vara en extra barriär i slutförvarskonceptet.
Subject Categories (SSIF 2011)
Inorganic Chemistry
Materials Chemistry
Chemical Sciences
Areas of Advance
Energy
Materials Science
ISBN
978-91-7905-682-7
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5148
Publisher
Chalmers