Generalized Spatially-Coupled Parallel Concatenated Codes With Partial Repetition
Journal article, 2022

A new class of spatially-coupled turbo-like codes (SC-TCs), dubbed generalized spatially coupled parallel concatenated codes (GSC-PCCs), is introduced. These codes are constructed by applying spatial coupling on parallel concatenated codes (PCCs) with a fraction of information bits repeated q times. GSC-PCCs can be seen as a generalization of the original spatially-coupled parallel concatenated codes proposed by Moloudi et al. [2]. To characterize the asymptotic performance of GSC-PCCs, we derive the corresponding density evolution equations and compute their decoding thresholds. The threshold saturation effect is observed and proven. Most importantly, we rigorously prove that the rate-R GSC-PCC ensemble with 2-state convolutional component codes achieves at least a fraction 1-R/R+q of the capacity of the binary erasure channel (BEC) for repetition factor q ≥ 2 and this multiplicative gap vanishes as q tends to infinity. To the best of our knowledge, this is the first class of SC-TCs that are proven to be capacity-achieving. Further, the connection between the strength of the component codes, the decoding thresholds of GSC-PCCs, and the repetition factor is established. The superiority of the proposed codes with finite blocklength is exemplified by comparing their error performance with that of existing SC-TCs via computer simulations.

Iterative decoding

Couplings

Achieving capacity

Convolutional codes

Decoding

Encoding

density evolution

Turbo codes

turbo codes

Codes

spatial coupling

Author

Min Qiu

University of New South Wales (UNSW)

Xiaowei Wu

University of New South Wales (UNSW)

Jinhong Yuan

University of New South Wales (UNSW)

Alexandre Graell I Amat

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

IEEE Transactions on Communications

00906778 (ISSN) 15580857 (eISSN)

Vol. 70 9 5771-5787

Subject Categories (SSIF 2011)

Telecommunications

DOI

10.1109/TCOMM.2022.3196686

More information

Latest update

3/7/2024 9