Cross-Channel Impedance Measurement for Monitoring Implanted Electrodes
Paper in proceeding, 2022

Implanted electrodes, such as those used for cochlear implants, brain-computer interfaces, and prosthetic limbs, rely on particular electrical conditions for optimal operation. Measurements of electrical impedance can be a diagnostic tool to monitor implanted electrodes for changing conditions arising from glial scarring, encapsulation, and shorted or broken wires. Such measurements provide information about the electrical impedance between a single electrode and its electrical reference, but offer no insights into the overall network of impedances between electrodes. Other solutions generally rely on geometrical assumptions of the arrangement of the electrodes and may not generalize to other electrode networks. Here, we propose a linear algebra-based approach, Cross-Channel Impedance Measurement (CCIM), for measuring a network of impedances between electrodes which all share a common electrical reference. This is accomplished by measuring the voltage response from all electrodes to a known current applied between each electrode and the shared reference, and is agnostic to the number and arrangement of electrodes. The approach is validated using a simulated 8-electrode network, demonstrating direct impedance measurements between electrodes and the reference with 96.6% ±0.2% accuracy, and cross-channel impedance measurements with 93.3% ±0.6% accuracy in a typical system. Subsequent analyses on randomized systems demonstrate the sensitivity of the model to impedance range and measurement noise. Clinical Relevance- CCIM provides a system-agnostic diagnostic test for implanted electrode networks, which may aid in the longitudinal tracking of electrode performance and early identification of electronics failures.

Impedance measurement

Voltage measurement

Current measurement

Prosthetic limbs

Sensitivity

Electrodes

Author

Eric Earley

Chalmers, Electrical Engineering, Systems and control

Enzo Mastinu

Chalmers, Electrical Engineering, Systems and control

Max Jair Ortiz Catalan

Chalmers, Electrical Engineering, Systems and control

Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

1557170X (ISSN)

4880-4883
978-1-7281-2782-8 (ISBN)

44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Glasgow, Scotland, United Kingdom,

Highly integrated bionic prostheses

Swedish Research Council (VR) (2020-04817), 2021-01-01 -- 2024-12-31.

Subject Categories

Surgery

Medical Laboratory and Measurements Technologies

Signal Processing

Areas of Advance

Health Engineering

DOI

10.1109/EMBC48229.2022.9871954

Related datasets

Cross-Channel Impedance Measurement for Monitoring Implanted Electrodes [dataset]

URI: https://osf.io/3h7ny/

More information

Latest update

11/23/2023