Development of powder bed fusion–laser beam process for AISI 4140, 4340 and 8620 low-alloy steel
Journal article, 2023

This study focuses on process development and mechanical property evaluation of AISI 4140, 4340 and 8620 low-alloy steel produced by powder bed fusion–laser beam (PBF-LB). Process development found that increasing the build plate preheating temperature to 180°C improved processability, as it mitigated lack of fusion and cold cracking defects. Subsequent mechanical testing found that the low-alloy steels achieved a high ultimate tensile strength (4140:∼1400 MPa, 4340:∼1500 MPa, 8620:∼1100 MPa), impact toughness (4140:∼90–100 J, 4340:∼60–70 J, 8620:∼150–175 J) and elongation (4140:∼14%, 4340:∼14%, 8620:∼14–15%) that met or exceeded the ASTM standards. Mechanical testing also revealed limited directional anisotropy that was attributed to low levels of internal defects (< 0.1%), small grains with weak crystallographic texture and improved tempering due to build plate preheating and post PBF-LB stress relief. This indicates that with adequate process development, low-alloy steels produced by PBF-LB can meet or exceed the performance of conventionally produced alloys.

Additive manufacturing

microstructure

powder bed fusion

low-alloy steel

build plate preheating

properties

processing

Author

William Hearn

Chalmers, Industrial and Materials Science, Materials and manufacture

P. Harlin

Sandvik

Eduard Hryha

Chalmers, Industrial and Materials Science, Materials and manufacture

Powder Metallurgy

0032-5899 (ISSN) 1743-2901 (eISSN)

Vol. 66 2 94-106

Subject Categories

Manufacturing, Surface and Joining Technology

Other Materials Engineering

Building Technologies

DOI

10.1080/00325899.2022.2134083

More information

Latest update

11/2/2023