Simulating Terahertz Field-Induced Ferroelectricity in Quantum Paraelectric SrTiO3
Journal article, 2022

Recent experiments have demonstrated that light can induce a transition from the quantum paraelectric to the ferroelectric phase of SrTiO3. Here, we investigate this terahertz field-induced ferroelectric phase transition by solving the time-dependent lattice Schrödinger equation based on first-principles calculations. We find that ferroelectricity originates from a light-induced mixing between ground and first excited lattice states in the quantum paraelectric phase. In agreement with the experimental findings, our study shows that the nonoscillatory second harmonic generation signal can be evidence of ferroelectricity in SrTiO3. We reveal the microscopic details of this exotic phase transition and highlight that this phenomenon is a unique behavior of the quantum paraelectric phase.

Author

Dongbin Shin

Max Planck Society

Simone Latini

Max Planck Society

Christian Schäfer

Max Planck Society

Chalmers, Microtechnology and Nanoscience (MC2), Applied Quantum Physics

Shunsuke A. Sato

University of Tsukuba

Max Planck Society

Edoardo Baldini

The University of Texas at Austin

Umberto De Giovannini

University of Palermo

Max Planck Society

Hannes Hübener

Max Planck Society

Angel Rubio

University of the Basque Country (UPV/EHU)

Flatiron Institute

Max Planck Society

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 129 16 167401

Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur

Swedish Research Council (VR) (2016-06059), 2017-01-01 -- 2022-12-31.

Subject Categories

Atom and Molecular Physics and Optics

Other Physics Topics

Condensed Matter Physics

DOI

10.1103/PhysRevLett.129.167401

PubMed

36306771

More information

Latest update

10/27/2023