Simulating Terahertz Field-Induced Ferroelectricity in Quantum Paraelectric SrTiO3
Artikel i vetenskaplig tidskrift, 2022

Recent experiments have demonstrated that light can induce a transition from the quantum paraelectric to the ferroelectric phase of SrTiO3. Here, we investigate this terahertz field-induced ferroelectric phase transition by solving the time-dependent lattice Schrödinger equation based on first-principles calculations. We find that ferroelectricity originates from a light-induced mixing between ground and first excited lattice states in the quantum paraelectric phase. In agreement with the experimental findings, our study shows that the nonoscillatory second harmonic generation signal can be evidence of ferroelectricity in SrTiO3. We reveal the microscopic details of this exotic phase transition and highlight that this phenomenon is a unique behavior of the quantum paraelectric phase.

Författare

Dongbin Shin

Max-Planck-Gesellschaft

Simone Latini

Max-Planck-Gesellschaft

Christian Schäfer

Max-Planck-Gesellschaft

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Shunsuke A. Sato

University of Tsukuba

Max-Planck-Gesellschaft

Edoardo Baldini

The University of Texas at Austin

Umberto De Giovannini

Universita degli Studi di Palermo

Max-Planck-Gesellschaft

Hannes Hübener

Max-Planck-Gesellschaft

Angel Rubio

Universidad del Pais Vasco / Euskal Herriko Unibertsitatea

Flatiron Institute

Max-Planck-Gesellschaft

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 129 16 167401

Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur

Vetenskapsrådet (VR) (2016-06059), 2017-01-01 -- 2022-12-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevLett.129.167401

PubMed

36306771

Mer information

Senast uppdaterat

2023-10-27