In situ characterisation for studying nucleation and growth of nanostructured materials and thin films during liquid-based synthesis
Journal article, 2023

Knowledge about the nucleation, growth, and formation mechanisms during materials synthesis using sol-gel and solution-based methods is important to design a material with desired properties. We used aqueous chemical synthesis as an environmentally friendly and highly flexible route to tailored and reproducible synthesis of oxide nanomaterials and thin films. For studies of hydrothermal synthesis an in situ cell using synchrotron X-ray diffraction was used to investigate the formation mechanisms of SrxBa1-xNb2O6 piezoelectrics. Aqueous chemical solution deposition of phase pure oriented piezoelectric thin films demands strong control of processing parameters. An in situ cell for synchrotron X-ray diffraction studies of the annealing and crystallisation steps during aqueous chemical solution deposition was used to understand the nucleation and crystallisation of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). We discuss how the knowledge about nucleation and growth obtained by in situ characterisation can be used to design the optimal procedure for fabrication of oxide materials with desired properties.

Thin film deposition

Sr Ba Nb O (SBN) x 1-x 2 6

Hydrothermal synthesis

In situ characterisation

Oxide piezoelectrics

Ba Ca Zr Ti O (BCZT) 0.85 0.15 0.1 0.9 3

Author

Kristine Bakken

Norwegian University of Science and Technology (NTNU)

Chalmers, Physics, Microstructure Physics

Ola Gjønnes Grendal

European Synchrotron Radiation Facility (ESRF)

Norwegian University of Science and Technology (NTNU)

Mari Ann Einarsrud

Norwegian University of Science and Technology (NTNU)

Journal of Sol-Gel Science and Technology

0928-0707 (ISSN) 1573-4846 (eISSN)

Vol. 105 2 596-605

Subject Categories

Inorganic Chemistry

Materials Chemistry

Other Materials Engineering

DOI

10.1007/s10971-022-05974-y

More information

Latest update

2/22/2023