Asymptotic behaviour of cuboids optimising Laplacian eigenvalues
Journal article, 2017

We prove that in dimension 𝑛β‰₯2, within the collection of unit-measure cuboids in ℝ𝑛 (i.e. domains of the form βˆπ‘›π‘–=1(0,π‘Žπ‘›)), any sequence of minimising domains π‘…ξˆ°π‘˜ for the Dirichlet eigenvalues πœ†π‘˜ converges to the unit cube as π‘˜β†’βˆž. Correspondingly we also prove that any sequence of maximising domains π‘…ξˆΊπ‘˜ for the Neumann eigenvalues πœ‡π‘˜ within the same collection of domains converges to the unit cube as π‘˜β†’βˆž. For 𝑛=2 this result was obtained by Antunes and Freitas in the case of Dirichlet eigenvalues and van den Berg, Bucur and Gittins for the Neumann eigenvalues. The Dirichlet case for 𝑛=3 was recently treated by van den Berg and Gittins. In addition we obtain stability results for the optimal eigenvalues as π‘˜β†’βˆž. We also obtain corresponding shape optimisation results for the Riesz means of eigenvalues in the same collection of cuboids. For the Dirichlet case this allows us to address the shape optimisation of the average of the first k eigenvalues.

Cuboids

Eigenvalues

Laplacian

Spectral optimisation

Asymptotics

Author

Katie Gittins

University of Neuchatel

Simon Larson

Royal Institute of Technology (KTH)

Integral Equations and Operator Theory

0378-620X (ISSN) 1420-8989 (eISSN)

Vol. 89 4 607-629

Subject Categories

Mathematical Analysis

DOI

10.1007/s00020-017-2407-5

More information

Latest update

10/3/2023