Asymptotic behaviour of cuboids optimising Laplacian eigenvalues
Artikel i vetenskaplig tidskrift, 2017

We prove that in dimension đ‘›â‰„2, within the collection of unit-measure cuboids in ℝ𝑛 (i.e. domains of the form ∏𝑛𝑖=1(0,𝑎𝑛)), any sequence of minimising domains 𝑅𝑘 for the Dirichlet eigenvalues 𝜆𝑘 converges to the unit cube as 𝑘→∞. Correspondingly we also prove that any sequence of maximising domains 𝑅îˆș𝑘 for the Neumann eigenvalues 𝜇𝑘 within the same collection of domains converges to the unit cube as 𝑘→∞. For 𝑛=2 this result was obtained by Antunes and Freitas in the case of Dirichlet eigenvalues and van den Berg, Bucur and Gittins for the Neumann eigenvalues. The Dirichlet case for 𝑛=3 was recently treated by van den Berg and Gittins. In addition we obtain stability results for the optimal eigenvalues as 𝑘→∞. We also obtain corresponding shape optimisation results for the Riesz means of eigenvalues in the same collection of cuboids. For the Dirichlet case this allows us to address the shape optimisation of the average of the first k eigenvalues.

Cuboids

Eigenvalues

Laplacian

Spectral optimisation

Asymptotics

Författare

Katie Gittins

Université de Neuchâtel

Simon Larson

Kungliga Tekniska Högskolan (KTH)

Integral Equations and Operator Theory

0378-620X (ISSN) 1420-8989 (eISSN)

Vol. 89 4 607-629

Ämneskategorier

Matematisk analys

DOI

10.1007/s00020-017-2407-5

Mer information

Senast uppdaterat

2023-10-03