A next-generation liquid xenon observatory for dark matter and neutrino physics
Review article, 2023

The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

neutrinoless double-beta decay

supernova

astroparticle physics

neutrinos

direct detection

dark matter

xenon

Author

J. Aalbers

Stanford University

S. S. Abdussalam

Shahid Beheshti University

K. Abe

University of Tokyo

V. Aerne

University of Zürich

F. Agostini

University of Bologna

S. Ahmed Maouloud

Pierre and Marie Curie University (UPMC)

D. S. Akerib

Stanford University

D. Y. Akimov

National Research Nuclear University

J. Akshat

Purdue University

A. K. Al Musalhi

University of Oxford

F. Alder

University College London (UCL)

S. K. Alsum

University of Wisconsin Madison

L. Althueser

University of Münster

C. S. Amarasinghe

University of Michigan

F. D. Amaro

University of Coimbra

A. Ames

Stanford University

T. J. Anderson

Stanford University

B. Andrieu

Pierre and Marie Curie University (UPMC)

N. Angelides

Imperial College London

E. Angelino

University of Turin

J. Angevaare

University of Amsterdam

V. C. Antochi

Oskar Klein Centre

D. Antón Martin

University of Chicago

B. Antunovic

University of Banja Luka

Institut za nuklearne nauke Vinca

E. Aprile

Columbia University

H. M. Araújo

Imperial College London

J. E. Armstrong

University of Maryland

F. Arneodo

New York University Abu Dhabi

M. Arthurs

University of Michigan

P. Asadi

Center for Theoretical Physics

S. Baek

Korea University

X. Bai

South Dakota School of Mines & Technology

D. Bajpai

University of Alabama

A. Baker

Imperial College London

J. Balajthy

University of California

S. Balashov

STFC Rutherford Appleton Laboratory

M. Balzer

Karlsruhe Institute of Technology (KIT)

A. Bandyopadhyay

Ramakrishna Mission Vivekananda Educational and Research Institute

J. Bang

Brown University

E. Barberio

School of Physics

J. W. Bargemann

University of California

L. Baudis

University of Zürich

D. Bauer

Imperial College London

D. Baur

University of Freiburg

A. Baxter

University of Liverpool

A. L. Baxter

Purdue University

M. Bazyk

Nantes University

K. Beattie

Lawrence Berkeley National Laboratory

J. Behrens

Karlsruhe Institute of Technology (KIT)

N. F. Bell

School of Physics

L. Bellagamba

University of Bologna

P. Beltrame

Vatican Observatory

M. Benabderrahmane

New York University Abu Dhabi

E. P. Bernard

University of California

Lawrence Berkeley National Laboratory

G. F. Bertone

University of Amsterdam

P. Bhattacharjee

Saha Institute of Nuclear Physics

A. Bhatti

University of Maryland

A. Biekert

Lawrence Berkeley National Laboratory

University of California

T. P. Biesiadzinski

Stanford University

A. R. Binau

Purdue University

R. Biondi

Laboratori Nazionali del Gran Sasso

Y. Biondi

University of Zürich

H. J. Birch

University of Michigan

F. Bishara

Deutsches Elektronen-Synchrotron (DESY)

A. Bismark

University of Zürich

C. Blanco

Princeton University

Oskar Klein Centre

G. M. Blockinger

SUNY Albany

E. Bodnia

University of California

C. Boehm

The University of Sydney

A. I. Bolozdynya

National Research Nuclear University

P. D. Bolton

University College London (UCL)

S. Bottaro

National Institute for Nuclear Physics

Scuola Normale Superiore di Pisa

C. Bourgeois

Laboratoire de l'Accélérateur Linéaire

B. Boxer

University of California

P. Brás

University of Coimbra

A. Breskin

Weizmann Institute of Science

P. A. Breur

University of Amsterdam

C. A.J. Brew

STFC Rutherford Appleton Laboratory

J. Brod

University of Cincinnati

E. Brookes

University of Amsterdam

A. Brown

University of Freiburg

E. Brown

Rensselaer Polytechnic Institute

S. Bruenner

University of Amsterdam

G. Bruno

Nantes University

R. Budnik

Weizmann Institute of Science

T. K. Bui

University of Tokyo

S. Burdin

University of Liverpool

S. Buse

University of Zürich

J. K. Busenitz

University of Alabama

D. Buttazzo

National Institute for Nuclear Physics

M. Buuck

Stanford University

A. Buzulutskov

Novosibirsk State University

Russian Academy of Sciences

R. Cabrita

University of Coimbra

C. Cai

Tsinghua University

D. Cai

Nantes University

C. Capelli

University of Zürich

J. M.R. Cardoso

University of Coimbra

M. C. Carmona-Benitez

Eberly College of Science

M. Cascella

University College London (UCL)

Riccardo Catena

Chalmers, Physics, Subatomic, High Energy and Plasma Physics

Journal of Physics G: Nuclear and Particle Physics

0954-3899 (ISSN) 13616471 (eISSN)

Vol. 50 1 013001

Empirical Determination of the Dark Matter Particle Spin

Swedish Research Council (VR) (2018-05029), 2019-01-01 -- 2022-12-31.

Subject Categories

Accelerator Physics and Instrumentation

Subatomic Physics

Other Physics Topics

DOI

10.1088/1361-6471/ac841a

More information

Latest update

1/24/2023