A next-generation liquid xenon observatory for dark matter and neutrino physics
Reviewartikel, 2023

The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

neutrinoless double-beta decay

supernova

astroparticle physics

neutrinos

direct detection

dark matter

xenon

Författare

J. Aalbers

Stanford University

S. S. Abdussalam

Shahid Beheshti University

K. Abe

University of Tokyo

V. Aerne

Universität Zürich

F. Agostini

Universita di Bologna

S. Ahmed Maouloud

Université Pierre et Marie Curie (UPMC)

D. S. Akerib

Stanford University

D. Y. Akimov

National Research Nuclear University

J. Akshat

Purdue University

A. K. Al Musalhi

University of Oxford

F. Alder

University College London (UCL)

S. K. Alsum

University of Wisconsin Madison

L. Althueser

Universität Münster

C. S. Amarasinghe

University of Michigan

F. D. Amaro

Universidade de Coimbra

A. Ames

Stanford University

T. J. Anderson

Stanford University

B. Andrieu

Université Pierre et Marie Curie (UPMC)

N. Angelides

Imperial College London

E. Angelino

Universita degli Studi di Torino

J. Angevaare

Universiteit Van Amsterdam

V. C. Antochi

Oskar Klein Centre

D. Antón Martin

University of Chicago

B. Antunovic

University of Banja Luka

Institut za nuklearne nauke Vinca

E. Aprile

Columbia University

H. M. Araújo

Imperial College London

J. E. Armstrong

University of Maryland

F. Arneodo

New York University Abu Dhabi

M. Arthurs

University of Michigan

P. Asadi

Center for Theoretical Physics

S. Baek

Korea University

X. Bai

South Dakota School of Mines & Technology

D. Bajpai

University of Alabama

A. Baker

Imperial College London

J. Balajthy

University of California

S. Balashov

STFC Rutherford Appleton Laboratory

M. Balzer

Karlsruher Institut für Technologie (KIT)

A. Bandyopadhyay

Ramakrishna Mission Vivekananda Educational and Research Institute

J. Bang

Brown University

E. Barberio

School of Physics

J. W. Bargemann

University of California

L. Baudis

Universität Zürich

D. Bauer

Imperial College London

D. Baur

Albert-Ludwigs-Universität Freiburg

A. Baxter

University of Liverpool

A. L. Baxter

Purdue University

M. Bazyk

Université de Nantes

K. Beattie

Lawrence Berkeley National Laboratory

J. Behrens

Karlsruher Institut für Technologie (KIT)

N. F. Bell

School of Physics

L. Bellagamba

Universita di Bologna

P. Beltrame

Vatican Observatory

M. Benabderrahmane

New York University Abu Dhabi

E. P. Bernard

University of California

Lawrence Berkeley National Laboratory

G. F. Bertone

Universiteit Van Amsterdam

P. Bhattacharjee

Saha Institute of Nuclear Physics

A. Bhatti

University of Maryland

A. Biekert

Lawrence Berkeley National Laboratory

University of California

T. P. Biesiadzinski

Stanford University

A. R. Binau

Purdue University

R. Biondi

Laboratori Nazionali del Gran Sasso

Y. Biondi

Universität Zürich

H. J. Birch

University of Michigan

F. Bishara

Deutsches Elektronen-Synchrotron (DESY)

A. Bismark

Universität Zürich

C. Blanco

Princeton University

Oskar Klein Centre

G. M. Blockinger

SUNY Albany

E. Bodnia

University of California

C. Boehm

The University of Sydney

A. I. Bolozdynya

National Research Nuclear University

P. D. Bolton

University College London (UCL)

S. Bottaro

Istituto Nazionale di Fisica Nucleare

Scuola Normale Superiore di Pisa

C. Bourgeois

Laboratoire de l'Accélérateur Linéaire

B. Boxer

University of California

P. Brás

Universidade de Coimbra

A. Breskin

Weizmann Institute of Science

P. A. Breur

Universiteit Van Amsterdam

C. A.J. Brew

STFC Rutherford Appleton Laboratory

J. Brod

University of Cincinnati

E. Brookes

Universiteit Van Amsterdam

A. Brown

Albert-Ludwigs-Universität Freiburg

E. Brown

Rensselaer Polytechnic Institute

S. Bruenner

Universiteit Van Amsterdam

G. Bruno

Université de Nantes

R. Budnik

Weizmann Institute of Science

T. K. Bui

University of Tokyo

S. Burdin

University of Liverpool

S. Buse

Universität Zürich

J. K. Busenitz

University of Alabama

D. Buttazzo

Istituto Nazionale di Fisica Nucleare

M. Buuck

Stanford University

A. Buzulutskov

Novosibirsk State University

Russian Academy of Sciences

R. Cabrita

Universidade de Coimbra

C. Cai

Tsinghua University

D. Cai

Université de Nantes

C. Capelli

Universität Zürich

J. M.R. Cardoso

Universidade de Coimbra

M. C. Carmona-Benitez

Eberly College of Science

M. Cascella

University College London (UCL)

Riccardo Catena

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

Journal of Physics G: Nuclear and Particle Physics

0954-3899 (ISSN) 13616471 (eISSN)

Vol. 50 1 013001

Empirisk bestämning av mörka materians spinn

Vetenskapsrådet (VR) (2018-05029), 2019-01-01 -- 2022-12-31.

Ämneskategorier

Acceleratorfysik och instrumentering

Subatomär fysik

Annan fysik

DOI

10.1088/1361-6471/ac841a

Mer information

Senast uppdaterat

2023-01-24