RIS-aided Near-Field Localization under Phase-Dependent Amplitude Variations
Journal article, 2023

We investigate the problem of reconfigurable intelligent surface (RIS)-aided near-field localization of a user equipment (UE) served by a base station (BS) under phase-dependent amplitude variations at each RIS element. Through a misspecified Cramér-Rao bound (MCRB) analysis and a resulting lower bound (LB) on localization, we show that when the UE is unaware of amplitude variations (i.e., assumes unit-amplitude responses), severe performance penalties can arise, especially at high signal-to-noise ratios (SNRs). Leveraging Jacobi-Anger expansion to decouple range-azimuth-elevation dimensions, we develop a low-complexity approximated mismatched maximum likelihood (AMML) estimator, which is asymptotically tight to the LB. To mitigate performance loss due to model mismatch, we propose to jointly estimate the UE location and the RIS amplitude model parameters. The corresponding Cramér-Rao bound (CRB) is derived, as well as an iterative refinement algorithm, which employs the AMML method as a subroutine and alternatingly updates individual parameters of the RIS amplitude model. Simulation results indicate fast convergence and performance close to the CRB. The proposed method can successfully recover the performance loss of the AMML under a wide range of RIS parameters and effectively calibrate the RIS amplitude model online with the help of a user that has an a-priori unknown location.

maximum likelihood estimator

Localization

reconfigurable intelligent surfaces

Jacobi-Anger expansion

hardware impairments

misspecified Cramér-Rao bound (MCRB)

Author

Cuneyd Ozturk

Northwestern University

Furkan Keskin

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Henk Wymeersch

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Sinan Gezici

Bilkent University

IEEE Transactions on Wireless Communications

15361276 (ISSN) 15582248 (eISSN)

Vol. 22 8 5550-5566

A New Waveform for Joint Radar and Communications Beyond 5G

European Commission (EC) (EC/H2020/888913), 2020-09-01 -- 2022-08-31.

Reconfigurable Intelligent Sustainable Environments for 6G Wireless Networks

European Commission (EC) (EC/2020/101017011), 2021-01-01 -- 2023-12-31.

Areas of Advance

Information and Communication Technology

Subject Categories (SSIF 2011)

Telecommunications

Communication Systems

Signal Processing

DOI

10.1109/TWC.2023.3235306

More information

Latest update

12/25/2023