Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks
Journal article, 2023

Modeling in heterogeneous catalysis requires the extensive evaluation of the energy of molecules adsorbed on surfaces. This is done via density functional theory but for large organic molecules it requires enormous computational time, compromising the viability of the approach. Here we present GAME-Net, a graph neural network to quickly evaluate the adsorption energy. GAME-Net is trained on a well-balanced chemically diverse dataset with C1–4 molecules with functional groups including N, O, S and C6–10 aromatic rings. The model yields a mean absolute error of 0.18 eV on the test set and is 6 orders of magnitude faster than density functional theory. Applied to biomass and plastics (up to 30 heteroatoms), adsorption energies are predicted with a mean absolute error of 0.016 eV per atom. The framework represents a tool for the fast screening of catalytic materials, particularly for systems that cannot be simulated by traditional methods.

Author

Sergio Pablo-García

Institut Català d’Investigació Química (ICIQ)

University of Toronto

Santiago Morandi

Institut Català d’Investigació Química (ICIQ)

Rovira i Virgili University

Rodrigo A. Vargas-Hernández

Vector Institute for AI

University of Toronto

Kjell Jorner

University of Toronto

Chalmers, Chemistry and Chemical Engineering, Chemistry and Biochemistry

Žarko Ivković

Institut Català d’Investigació Química (ICIQ)

Núria López

Institut Català d’Investigació Química (ICIQ)

Alán Aspuru-Guzik

Canadian Institute for Advanced Research

University of Toronto

Vector Institute for AI

Nature Computational Science

26628457 (eISSN)

Vol. 3 5 433-442

Inverse design of molecules and reactions

Swedish Research Council (VR) (2020-00314), 2021-01-01 -- 2023-12-31.

Subject Categories

Chemical Sciences

DOI

10.1038/s43588-023-00437-y

More information

Latest update

3/7/2024 9