Multilayer Dry Film Photoresist Fabrication of a Robust >100 GHz Gap Waveguide Slot Array Antenna
Journal article, 2023

This article presents the first use of a multilayer dry film photoresist to fabricate a slot array antenna by micromachining. The proposed fabrication process demonstrates a straightforward and fast method of realizing antenna structures and delicate features with very high accuracy above 100 GHz. The slot array antenna design is based on gap waveguide technology. The designed antenna consists of two layers: a slot layer and a feed layer with a transition to measuring waveguide. The antenna contains structures that require a multiple level dry film fabrication process with thicknesses ranging from 80 μm to 400 μm with ± 10 μm tolerance. The fabricated antenna shows good accuracy. To make the fabricated antenna layers conductive, the fabricated polymer antenna was coated with Ti and Au. The input reflection coefficient was measured to be below – 11 dB over a 10% bandwidth from 136-148 GHz, and the antenna gain was measured to be 11.4 dBi at 142 GHz, both of which are in fair agreement with simulations. A thermal cycling test has been conducted on the fabricated antenna and the results show insignificant degradation at least up to 300 cycles in the temperature range –50 °C to 135 °C which is the typical temperature gradient range for many practical outdoor wireless applications.

Antenna measurements

microfabrication

micromachined millimeter wave antenna

gap waveguide technology

Fabrication

Resists

Pins

thermal reliability

Gap waveguide

slot array

Slot antennas

Dry film photoresist

Antenna arrays

Author

Sadia Farjana

Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems

Esperanza Alfonso Alos

Gapwaves AB

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Per Lundgren

Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems

Vessen Vassilev

Chalmers, Microtechnology and Nanoscience (MC2), Microwave Electronics

Peter Enoksson

Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems

Enoaviatech AB

Ashraf Uz Zaman

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

IEEE Access

2169-3536 (ISSN) 21693536 (eISSN)

Vol. 11 43630-43638

Subject Categories

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/ACCESS.2023.3271357

More information

Latest update

11/17/2023