Quantum bath suppression in a superconducting circuit by immersion cooling
Journal article, 2023

Quantum circuits interact with the environment via several temperature-dependent degrees of freedom. Multiple experiments to-date have shown that most properties of superconducting devices appear to plateau out at T ≈ 50 mK – far above the refrigerator base temperature. This is for example reflected in the thermal state population of qubits, in excess numbers of quasiparticles, and polarisation of surface spins – factors contributing to reduced coherence. We demonstrate how to remove this thermal constraint by operating a circuit immersed in liquid 3He. This allows to efficiently cool the decohering environment of a superconducting resonator, and we see a continuous change in measured physical quantities down to previously unexplored sub-mK temperatures. The 3He acts as a heat sink which increases the energy relaxation rate of the quantum bath coupled to the circuit a thousand times, yet the suppressed bath does not introduce additional circuit losses or noise. Such quantum bath suppression can reduce decoherence in quantum circuits and opens a route for both thermal and coherence management in quantum processors.

Author

M. Lucas

Royal Holloway University of London

Andrey Danilov

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

L. V. Levitin

Royal Holloway University of London

Aditya Jayaraman

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

A. J. Casey

Royal Holloway University of London

L. Faoro

Google Inc.

Alexander Tzalenchuk

Royal Holloway University of London

National Physical Laboratory (NPL)

Sergey Kubatkin

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

J. Saunders

Royal Holloway University of London

Sebastian Erik de Graaf

National Physical Laboratory (NPL)

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 14 1 3522

European Microkelvin Platform (EMP)

European Commission (EC) (EC/H2020/824109), 2019-01-01 -- 2022-12-31.

Mikrovågsförstärkare med kvantbegränsad prestanda

Swedish Research Council (VR) (2016-04828), 2017-01-01 -- 2020-12-31.

Ultima gränsen för känsliga komponenter: Supraledande kvantkrets i form av resonator vid ultralåg temperatur

Swedish Research Council (VR) (2019-05480), 2020-01-01 -- 2023-12-31.

Wallenberg Centre for Quantum Technology (WACQT)

Knut and Alice Wallenberg Foundation (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Quantum noise pathfinder

Swedish Research Council (VR) (2020-04393), 2021-01-01 -- 2024-12-31.

Subject Categories (SSIF 2011)

Atom and Molecular Physics and Optics

Theoretical Chemistry

Condensed Matter Physics

DOI

10.1038/s41467-023-39249-z

PubMed

37316500

Related datasets

Dataset for "Quantum bath suppression in a superconducting circuit by immersion cooling" [dataset]

DOI: 10.5281/zenodo.7937066

More information

Latest update

1/14/2025