The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics
Journal article, 2023

Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.

Grain boundaries

Oxides

Ceramic processing

Space-charge regions

Defects

Interfaces

Segregation

Charge compensation

Electroceramics

Fermi energy

Surfaces

Author

Andreas Klein

Technische Universität Darmstadt

K. Albe

Technische Universität Darmstadt

Nicole Bein

Technische Universität Darmstadt

Oliver Clemens

University of Stuttgart

Kim Alexander Creutz

Technische Universität Darmstadt

Paul Erhart

Chalmers, Physics, Condensed Matter and Materials Theory

Markus Frericks

Technische Universität Darmstadt

Elaheh Ghorbani

Technische Universität Darmstadt

Jan Philipp Hofmann

Technische Universität Darmstadt

Binxiang Huang

Technische Universität Darmstadt

Bernhard Kaiser

Technische Universität Darmstadt

Ute Kolb

Johannes Gutenberg University Mainz

Technische Universität Darmstadt

Jurij Koruza

Technische Universität Graz

C. Kubel

Karlsruhe Institute of Technology (KIT)

Technische Universität Darmstadt

Katharina N.S. Lohaus

Technische Universität Darmstadt

Jürgen Rödel

Technische Universität Darmstadt

Jochen Rohrer

Technische Universität Darmstadt

Wolfgang Rheinheimer

Forschungszentrum Jülich

Roger A. Souza

RWTH Aachen University

Verena Streibel

Technical University of Munich

Anke Weidenkaff

Technische Universität Darmstadt

Fraunhofer Project Group Materials Recycling and Resource Strategies IWKS

Marc Widenmeyer

Technische Universität Darmstadt

Bai Xiang Xu

Technische Universität Darmstadt

Hongbin Zhang

Technische Universität Darmstadt

Journal of Electroceramics

1385-3449 (ISSN) 1573-8663 (eISSN)

Areas of Advance

Nanoscience and Nanotechnology

Materials Science

Subject Categories

Materials Engineering

Physical Sciences

DOI

10.1007/s10832-023-00324-y

More information

Latest update

12/12/2023