On Scene Injury Severity Prediction (OSISP) model for trauma developed using the Swedish Trauma Registry
Journal article, 2023

Background: Providing optimal care for trauma, the leading cause of death for young adults, remains a challenge e.g., due to field triage limitations in assessing a patient’s condition and deciding on transport destination. Data-driven On Scene Injury Severity Prediction (OSISP) models for motor vehicle crashes have shown potential for providing real-time decision support. The objective of this study is therefore to evaluate if an Artificial Intelligence (AI) based clinical decision support system can identify severely injured trauma patients in the prehospital setting. Methods: The Swedish Trauma Registry was used to train and validate five models – Logistic Regression, Random Forest, XGBoost, Support Vector Machine and Artificial Neural Network – in a stratified 10-fold cross validation setting and hold-out analysis. The models performed binary classification of the New Injury Severity Score and were evaluated using accuracy metrics, area under the receiver operating characteristic curve (AUC) and Precision-Recall curve (AUCPR), and under- and overtriage rates. Results: There were 75,602 registrations between 2013–2020 and 47,357 (62.6%) remained after eligibility criteria were applied. Models were based on 21 predictors, including injury location. From the clinical outcome, about 40% of patients were undertriaged and 46% were overtriaged. Models demonstrated potential for improved triaging and yielded AUC between 0.80–0.89 and AUCPR between 0.43–0.62. Conclusions: AI based OSISP models have potential to provide support during assessment of injury severity. The findings may be used for developing tools to complement field triage protocols, with potential to improve prehospital trauma care and thereby reduce morbidity and mortality for a large patient population.

Clinical Decision Support System (CDSS)

Prehospital care

Artificial Intelligence (AI)

Field triage

On Scene Injury Severity Prediction (OSISP)

Trauma

Author

Anna Bakidou

Chalmers, Electrical Engineering, Signal Processing and Biomedical Engineering

University of Borås

Eva Corina Caragounis

Sahlgrenska University Hospital

M. A. Hagiwara

University of Borås

Anders Jonsson

University of Borås

Bengt-Arne Sjöqvist

Chalmers, Electrical Engineering, Signal Processing and Biomedical Engineering

Stefan Candefjord

Chalmers, Electrical Engineering, Signal Processing and Biomedical Engineering

BMC Medical Informatics and Decision Making

14726947 (eISSN)

Vol. 23 1 206

Subject Categories

Clinical Medicine

Health Sciences

Other Medical and Health Sciences

DOI

10.1186/s12911-023-02290-5

PubMed

37814288

More information

Latest update

10/20/2023