Brain stimulation-on-a-chip: a neuromodulation platform for brain slices
Journal article, 2023

Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.

Author

Sebastian W. Shaner

University of Freiburg

Han Lu

University of Freiburg

Maximilian Lenz

University of Freiburg

Hannover Medical School (MHH)

Shreyash Garg

University of Freiburg

Andreas Vlachos

University of Freiburg

Maria Asplund

University of Freiburg

Luleå University of Technology

Chalmers, Microtechnology and Nanoscience (MC2), Electronics Material and Systems

Lab on a Chip - Miniaturisation for Chemistry and Biology

1473-0197 (ISSN) 1473-0189 (eISSN)

Vol. 23 23 4967-4985

Supercapacitive Polymer Electrodes for Directing Epithelial Repair (SPEEDER)

European Research Council (ERC) (759655-SPEEDER), 2022-06-01 -- 2023-07-31.

Subject Categories

Other Medical Engineering

Neurosciences

Biomedical Laboratory Science/Technology

Neurology

DOI

10.1039/d3lc00492a

PubMed

37909911

More information

Latest update

3/7/2024 9