Microcapsules for Functionalization of Fibrous Materials: From Formulation Development to Long-term Microbial Infection Control
Doctoral thesis, 2023
This thesis explores the utilization of microcapsule functionalization as a means of enabling a controlled release of active substances from fibrous materials. Successful control requires (i) a toolbox for tuning the release profiles from microcapsules and (ii) an effective functionalization strategy that retains the release rate-limiting properties of the microcapsules in the fibrous material. An improved theory for microcapsule morphology prediction following internal phase separation was first established, incorporating the importance of both thermodynamically controlled intermediate morphologies and the kinetics of formation. This allowed for improved morphology control during formulation, facilitating the development of microcapsule formulations capable of achieving both immediate release in response to pH changes and UV light exposure, as well as sustained long-term release over several weeks to months. A method for functionalizing wet-spun and solution-blown biobased polysaccharide fibers with these microcapsules was consequently developed and evaluated. The microcapsules were embedded within the fibers, retaining their rate-limiting properties and demonstrating the potential for creating a macroscopic controlled release material.
As a proof of concept, a prototype material was evaluated for long-term microbial infection control. In this material, microcapsules loaded with the antimicrobial agent octenidine dihydrochloride (OCT) were incorporated into a cellulose nonwoven textile. In vitro experiments confirmed that the sustained OCT release from the material prototype effectively provided long-term infection control against S. aureus for more than one week. In contrast, a control material loaded using conventional impregnation lost its antimicrobial efficacy after just 30 minutes. This highlights the possibilities associated with controlled release of actives, not only for infection control but also a wider range of applications.
Controlled release
Antimicrobial
Microencapsulation
Author
Viktor Eriksson
Chalmers, Chemistry and Chemical Engineering, Applied Chemistry
Eriksson, V., Edegran, S., Croy, M., Evenäs, L., Andersson Trojer, M. A Unified Thermodynamic and Kinetic Approach for Prediction of Microcapsule Morphologies
Eriksson, V., Beckerman, L., Aerts, E., Andersson Trojer, M., Evenäs, L. Polyanhydride Microcapsules Exhibiting a Sharp pH-transition at Physiological Conditions for Instantaneous Triggered Release
Formulation of polyphthalaldehyde microcapsules for immediate UV-light triggered release
Journal of Colloid and Interface Science,;Vol. 579(2020)p. 645-653
Journal article
Eriksson, V., Nygren, E., Bordes, R., Evenäs, L., Andersson Trojer, M. Electrostatically hindered diffusion for predictable release of encapsulated cationic antimicrobials
Solution-Spinning of a Collection of Micro- and Nanocarrier-Functionalized Polysaccharide Fibers
Macromolecular Materials and Engineering,;Vol. In Press(2022)
Journal article
Microcapsule functionalization enables rate-determining release from cellulose nonwovens for long-term performance
Journal of Materials Chemistry B,;Vol. In Press(2023)
Journal article
Eriksson, V., Gonzales Strömberg, L., Persson, I., Tjörnstrand, U., Melin, P., Book, F., Wassmur, B., Backhaus, T., Nygren, E., Evenäs, L., Andersson Trojer, M. Microencapsulation as a means for resource-efficient and long-term infection control: antimicrobial efficiency of and sustained release from cellulosic nonwovens containing PLGA-encapsulated octenidine
För att stävja dessa problem krävs en minskad och kontrollerad frisättningshastighet från produkterna. I detta avhandlingsarbete har antimikrobiella ämnena kapslats in i en rad olika typer av så kallade mikrokapslar för att möjliggöra en kontrollerad frisättning. En förbandsprototyp med önskade frisättningsegenskaper utvecklades genom att integrera mikrokapslarna i biobaserade textilier. Den utvecklade prototypen utvärderades sedan genom att studera dess möjlighet att långsiktigt förhindra tillväxt av bakterier som vanligen orsakar hudinfektioner. Jämfört med typisk kommersiell impregnering kunde livslängden förlängas från timmar till över en vecka, potentiellt månader, trots en låg dos av verksamt ämne. Detta visar på tillämpningsmöjligheterna med det utvecklade textilmaterialet, vars koncept skulle kunna utvecklas bortom infektionskontroll inom sårvård, till applikationer som påväxtskydd i marina miljöer eller växtskyddande jordbrukstextilier.
Tailored innovations for lower emissions and reduced risks for development of bacterial resistance (ReSist)
VINNOVA (2021-01611), 2021-07-01 -- 2023-06-30.
Smart, benign and synergistic antifouling cocktails for achieving a non-toxic environment: formulation and ecotoxicological evaluation
Formas (2018-02284), 2018-12-01 -- 2022-11-30.
Smart frisättning från antimikrobiell cellulosatextil för hållbar sårvård av svårläkta kroniska sår
VINNOVA (2017-04693), 2018-01-08 -- 2019-12-20.
Driving Forces
Sustainable development
Subject Categories
Physical Chemistry
Textile, Rubber and Polymeric Materials
Materials Chemistry
Areas of Advance
Materials Science
ISBN
978-91-7905-962-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5428
Publisher
Chalmers
KB
Opponent: Professor Steven P. Armes, Department of Chemistry, University of Sheffield, UK