Microcapsules for Functionalization of Fibrous Materials: From Formulation Development to Long-term Microbial Infection Control
Doctoral thesis, 2023

In response to growing concerns regarding the impact of antimicrobial agents on the environment and public health, a more sustainable approach to their use in products is needed. The problem originates from rapid and uncontrolled release, leading to difficulties in maintaining long-term efficacy. A common solution to prolong the lifetimes of materials is to increase the dose of active substances, however, this causes significant losses, pollution, and antimicrobial resistance development in microorganisms. A more sustainable solution would be materials that release these substances in a controlled manner, only slightly surpassing effective concentrations.

This thesis explores the utilization of microcapsule functionalization as a means of enabling a controlled release of active substances from fibrous materials. Successful control requires (i) a toolbox for tuning the release profiles from microcapsules and (ii) an effective functionalization strategy that retains the release rate-limiting properties of the microcapsules in the fibrous material. An improved theory for microcapsule morphology prediction following internal phase separation was first established, incorporating the importance of both thermodynamically controlled intermediate morphologies and the kinetics of formation. This allowed for improved morphology control during formulation, facilitating the development of microcapsule formulations capable of achieving both immediate release in response to pH changes and UV light exposure, as well as sustained long-term release over several weeks to months. A method for functionalizing wet-spun and solution-blown biobased polysaccharide fibers with these microcapsules was consequently developed and evaluated. The microcapsules were embedded within the fibers, retaining their rate-limiting properties and demonstrating the potential for creating a macroscopic controlled release material.

As a proof of concept, a prototype material was evaluated for long-term microbial infection control. In this material, microcapsules loaded with the antimicrobial agent octenidine dihydrochloride (OCT) were incorporated into a cellulose nonwoven textile. In vitro experiments confirmed that the sustained OCT release from the material prototype effectively provided long-term infection control against S. aureus for more than one week. In contrast, a control material loaded using conventional impregnation lost its antimicrobial efficacy after just 30 minutes. This highlights the possibilities associated with controlled release of actives, not only for infection control but also a wider range of applications.

Controlled release

Antimicrobial

Microencapsulation

KB
Opponent: Professor Steven P. Armes, Department of Chemistry, University of Sheffield, UK

Author

Viktor Eriksson

Chalmers, Chemistry and Chemical Engineering, Applied Chemistry

Eriksson, V., Edegran, S., Croy, M., Evenäs, L., Andersson Trojer, M. A Unified Thermodynamic and Kinetic Approach for Prediction of Microcapsule Morphologies

Eriksson, V., Beckerman, L., Aerts, E., Andersson Trojer, M., Evenäs, L. Polyanhydride Microcapsules Exhibiting a Sharp pH-transition at Physiological Conditions for Instantaneous Triggered Release

Formulation of polyphthalaldehyde microcapsules for immediate UV-light triggered release

Journal of Colloid and Interface Science,;Vol. 579(2020)p. 645-653

Journal article

Eriksson, V., Nygren, E., Bordes, R., Evenäs, L., Andersson Trojer, M. Electrostatically hindered diffusion for predictable release of encapsulated cationic antimicrobials

Solution-Spinning of a Collection of Micro- and Nanocarrier-Functionalized Polysaccharide Fibers

Macromolecular Materials and Engineering,;Vol. In Press(2022)

Journal article

Eriksson, V., Gonzales Strömberg, L., Persson, I., Tjörnstrand, U., Melin, P., Book, F., Wassmur, B., Backhaus, T., Nygren, E., Evenäs, L., Andersson Trojer, M. Microencapsulation as a means for resource-efficient and long-term infection control: antimicrobial efficiency of and sustained release from cellulosic nonwovens containing PLGA-encapsulated octenidine

Idag används antimikrobiella ämnen i alldeles för höga doser, särskilt inom sjukvården där till exempel impregnerade förband används för att förhindra mikrobiella infektioner. De antimikrobiella ämnena frisätts snabbt och okontrollerat från produkterna vid användning, vilket begränsar deras livslängd. För att öka livslängden tillsätts därför höga doser av det antimikrobiella ämnet. Detta leder både till stora oönskade utsläpp av dessa substanser till vår omgivning samt stora problem med resistensutveckling hos mikroorganismerna.

För att stävja dessa problem krävs en minskad och kontrollerad frisättningshastighet från produkterna. I detta avhandlingsarbete har antimikrobiella ämnena kapslats in i en rad olika typer av så kallade mikrokapslar för att möjliggöra en kontrollerad frisättning. En förbandsprototyp med önskade frisättningsegenskaper utvecklades genom att integrera mikrokapslarna i biobaserade textilier. Den utvecklade prototypen utvärderades sedan genom att studera dess möjlighet att långsiktigt förhindra tillväxt av bakterier som vanligen orsakar hudinfektioner. Jämfört med typisk kommersiell impregnering kunde livslängden förlängas från timmar till över en vecka, potentiellt månader, trots en låg dos av verksamt ämne. Detta visar på tillämpningsmöjligheterna med det utvecklade textilmaterialet, vars koncept skulle kunna utvecklas bortom infektionskontroll inom sårvård, till applikationer som påväxtskydd i marina miljöer eller växtskyddande jordbrukstextilier.

Tailored innovations for lower emissions and reduced risks for development of bacterial resistance (ReSist)

VINNOVA (2021-01611), 2021-07-01 -- 2023-06-30.

Smart, benign and synergistic antifouling cocktails for achieving a non-toxic environment: formulation and ecotoxicological evaluation

Formas (2018-02284), 2018-12-01 -- 2022-11-30.

Smart frisättning från antimikrobiell cellulosatextil för hållbar sårvård av svårläkta kroniska sår

VINNOVA (2017-04693), 2018-01-08 -- 2019-12-20.

Driving Forces

Sustainable development

Subject Categories

Physical Chemistry

Textile, Rubber and Polymeric Materials

Materials Chemistry

Areas of Advance

Materials Science

ISBN

978-91-7905-962-0

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5428

Publisher

Chalmers

KB

Opponent: Professor Steven P. Armes, Department of Chemistry, University of Sheffield, UK

More information

Latest update

12/1/2023