Low-noise phase-sensitive optical parametric amplifier with lossless local pump generation using a digital dither optical phase-locked loop
Journal article, 2023

The low noise figure of phase-sensitive amplifiers (PSAs) is attractive for optically pre-amplified measurement and communication systems. However, a major practical implementation difficulty pertains to the requirement of phase-locked signal, idler, and pump waves. Previously, injection locking to a co-propagating weak pump pilot or tapping portions of the received signal (lossy) for carrier re-generation have been used. Here we present a novel, lossless approach without any pump pilot, that generates a phase-locked receiver-local pump within the PSA using a digital dither-based optical phase-locked loop. We experimentally demonstrate a 2 dB noise figure with a low 0.3 dB penalty due to imperfect locking. By comparing the phase-locking performance in a PSA to that in a 50/50-coupler, we discuss and predict potential performance improvements connected to loop delay and laser phase characteristics.

Author

Rasmus Larsson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Kovendhan Vijayan

Nokia

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Jochen Schröder

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Peter Andrekson

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Optics Express

1094-4087 (ISSN) 10944087 (eISSN)

Vol. 31 22 36603-36614

Noiseless phase-sensitive optical amplifiers and their applications

Swedish Research Council (VR) (2015-00535), 2016-01-01 -- 2025-12-31.

Subject Categories

Telecommunications

Atom and Molecular Physics and Optics

Signal Processing

DOI

10.1364/OE.499280

PubMed

38017808

More information

Latest update

2/2/2024 3